Unit 7 - Review

1. Find the area of the triangle if $a=5, b=8$, and $C=81$.

$$
\begin{aligned}
A & =\frac{1}{2}(5)(8) \sin 81^{\circ} \\
& =10.3007
\end{aligned}
$$

2. Plot the following points:
$A\left(3, \frac{5 \pi}{6}\right)$
$B\left(-3,210^{\circ}\right)$

3. Convert the polar coordinates to rectangular coordinates:

$$
\begin{array}{ll}
& \left(1,-45^{\circ}\right) \rightarrow\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right) \\
x=1 \cos \left(-45^{\circ}\right) & \left(-2,300^{\circ}\right) \rightarrow(-1, \sqrt{3}) \\
x=-\frac{\sqrt{2}}{2} & x=-2 \cos 300^{\circ} \\
y=1 \sin \left(-45^{\circ}\right) & x=-2\left(\frac{1}{2}\right)=-1 \\
y=-\frac{\sqrt{2}}{2} & y=-2 \sin 300^{\circ} \\
& y=-2\left(-\frac{\sqrt{3}}{2}\right)=\sqrt{3}
\end{array}
$$

4. Convert the rectangular coordinates to polar coordinates:

$$
\begin{aligned}
& (-2,5) \\
& \text { and } \\
& \text { (1, 3) } \\
& (-2)^{2}+5^{2}=r^{2} \\
& 4+25=r^{2} \\
& 29=r^{2} \\
& r= \pm \sqrt{29} \\
& \tan \theta=5 /-2 \\
& \theta=\tan ^{-1}(5 /-2) \\
& 1^{2}+3^{2}=1^{2} \\
& \begin{array}{l}
10=r^{2} \\
r=\sqrt{10}
\end{array} \\
& \tan \theta=3 / 1 \\
& \theta=\tan ^{-1}(3) \\
& 71.57^{\circ} ; 251.57^{\circ} \\
& \left(\sqrt{10}, 71.97^{0}\right)\left(-\sqrt{0,25157^{2}}\right)
\end{aligned}
$$

7. Solve the Triangle if $A=32, a=17$, and $b=11$
8. Graph the following parametric equation over $0 \leq t \leq 4$

9. Kirby hits a ball when it is 4 ft above the ground with an initial velocity of $120 \mathrm{ft} / \mathrm{sec}$. The ball leaves the bat at 30 angle with the horizontal. How far will it travel?

$$
\begin{array}{ll}
x(t)=120\left(\cos 30^{\circ}\right) t & y(t)=-16 t^{2}+120(\sin 30) t+4 \\
x(t)=396.52 f t & 0=\frac{-16 t^{2}+120 \sin 30 t+4}{} \begin{array}{l}
t=3.8155218 \\
x=\frac{-120 \sin 30+\sqrt{(120 \sin 30)^{2}-4(-16)(4)}}{2(-16)}
\end{array}
\end{array}
$$

10. A baseball is hit straight up from a height of 5 ft with an initial velocity of $80 \mathrm{ft} / \mathrm{sec}$. Its position is modeled by the parametric equations $x=t$ and. $y=-16 t^{2}+80 t+5 \quad$ How long will the ball be in the air? At what time will the ball be 60 ft in the air?

$$
\begin{array}{ll}
0=-16 t^{2}+80 t+5 & 60=-16 t^{2}+80 t+5 \\
t=\frac{-60 \pm \sqrt{80^{2}-4(-16)(5)}}{2(-16)} & 0=-16 t^{2}+80 t-55 \\
t \approx 5.062 \text { scends } & t=\frac{-80 \pm \sqrt{80^{2}-4(-16)(-55)}}{2(-16)} \\
& \\
& t \approx 4.29 .638
\end{array}
$$

11. Find the polar equation for the following rectangular equation:

$$
\begin{gathered}
(x+3)^{2}+(y+3)^{2}=18 \\
\left.x^{2}+6 x+(9)+y^{2}+6 y+9\right)=18 \\
\left(x^{2}+y^{2}+6 x+6 y=0\right. \\
r^{2}+6(r \cos \theta)+6(r \sin \theta)=0 \\
\frac{r^{2}}{r}=\frac{-6 r \cos \theta-6 r \sin \theta}{r} \\
r=-6 \cos \theta-6 \sin \theta
\end{gathered}
$$

12. Analyze the graph of $r=3-4 \sin \theta$ State the domain, range, symmetry, and type of limacon.

$$
\begin{aligned}
& \frac{3}{4}<1 \quad \text { looped } \\
& D:(-\infty, \infty) \\
& R:[3-4,3+4]=[-1,7] \\
& S Y: y \text {-axis }
\end{aligned}
$$

12. Analyze the graph of $r=3 \sin 2 \theta$

State the domain, range, symmetry, \# of petals and length of petals

