1.2

y-intercepts: where the graph crosses the y- Function: when each domain value is paired with on axis and $x=0$ one range value (no repeating x's)
x-intercepts: where the graph crosses the . graphically: passes the vertical line test x-axis and $y=0$

Domain \& Range (card)

Domain: x-values - input read x's from left to rt. (smallest to largest)
*some functions have domain restrictions - can't divide by zero
to find: set the den. $=0$ and solve for x . These are the restrictions.
can't have a neg. \# in a sq. root
to find: set the radicand ≥ 0 and solve for x.
Range: y-values - output
read y's from bottom to top (smallest to largest)

Domain Restrictions:

1. Exclude any value that makes the denominator $=0$
2. Exclude values that lead to the $\sqrt{ }$ of a negative number
3. Taking the Log of a negative number

Asymptotes:

vertical (VA): caused by dividing by 0
the graph approaches $-\infty$ or ∞
on each side of the asymptote
to find the asymptote set den $=0$ and solve
end behavior:(horizontal (HA) or oblique (OA)):
to find the asymptote - compare the degrees of the num and den. if top heavy (OA):
bottom heavy (HA): y = 0
equal (HA): divide coefficients
oblique: (more later)

Increasing, Decreasing and Constant

- as you move from left to right the y-values increase as you move from left to right the y-values decrease - as you move from left to right the y-values do not change
this behavior is reported using interval notation for the x -values where the graph has a certain behavior

Extrema
maximums

- relative (local)
- absolute (upper bound)
minimums
- relative (local)
- absolute (lower bound)

Odd/Even/Neither Symmetry (arad itite)

Odd $f(-x)=-f(x)$
symmetry with respect to the origin
Even $f(-x)=f(x)$
symmetry with respect to the y-axis
Neither
1.3

$$
\begin{array}{llc}
f(x)=x^{2} & \mathrm{f}(\mathrm{x})=\mathrm{x} & f(x)=x^{3} f(x)=\ln x
\end{array} \quad f(x)=|x|
$$

Piecewise Functions

certain pieces of the function have specific behavior frequently: intervals (parts) of the domain are associated with different functions (related to continuity)

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq 0 \\ x & \text { if } x>0\end{cases}
$$

1.4

Composition of Functions - defined

$$
(f \circ g)(x)=f(g(x))
$$

Finding the domain of a composition 1 .What is
$f(x)=x^{2}-1 \quad g(x)=\sqrt{x}$ $(g \circ f)(x)$
$(f \circ g)(x)$
the domain
of the first
function?
2. Find the domain
restrictions
of the new
function
3. Put them
together
1.5

Finding an Inverse Algebraically (card) Steps:

1. replace $f(x)$ or relation name w / y if not in that form
2. switch the $x \& y$ in the eq. (just $x \& y$ not signs, coefficients, or exponents)
3. Solve for y.
4. replace y with relation name $e^{-1}\left(f^{-1}\right.$ or $\left.^{-1}\right)$

Domain changes Range changes
$\pm \quad$ if (-) reflection over x-axis
(range Δ)
$\Theta \quad$ vertical expansion or compression (range Δ)
$\Theta>1$ expansion
$\Theta<1$ compression
$\quad \pm$ if $(-)$ reflection over y-axis (domain Δ)
\# horizontal expansion or compression (domain Δ)
$0<\#<1$ expansion
\#>1 compression
$\Delta \quad$ translation left or right
(domain Δ)
$(+)$ left (-) right

- translation up or down
(range Δ)
$(+)$ up (-) down

