Writing Equations of Lines

$$
\begin{gathered}
m=\frac{7-3}{3-1}=\frac{4}{2}=2 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=2(x-1) \\
y-3=2 x-2 \\
y=2 x+1
\end{gathered}
$$

Quadratic Equations:

Standard Form: \downarrow

$$
y=a x^{2}+b x+c
$$

Graphing or Vertex Form:

$$
\rightarrow y=a(x-h)^{2}+k^{\swarrow}
$$

vertex: (h,k)
axis of symmetry $\mathrm{x}=\mathrm{h}$
how do you change from standard to vertex form???

$$
\begin{aligned}
& \text { wite the eq. of the parabola l wi/ vertex }(-2,-3) \text { \& point }(-4,-5) \\
& y=a(x-h)^{2} \\
&-5=1(-4+2)^{2}-3 \\
&-5=a(-2)^{2}-3 \\
&-5=4 a-3 \\
& \frac{-2}{4}=\frac{-1}{2}(x+2)^{2}-3 \\
& a=-1 / 2
\end{aligned}
$$

End Behavior (polynomial)

End Behavior is determined by the degree of the polynomial and the coefficient of the leading term. The mathematical notation is written using limits.

$\lim _{x \rightarrow-\infty} f(x)=$

Odd Degree: the left \& right ends go in opp. directions $(+)$ coeff. (-) coeff.
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty \quad \lim _{x \rightarrow-\infty} f(x)=\infty$

Even Degree: both ends go in the same direction

$$
\begin{array}{cc}
(+) \text { coeff. } & (-) \text { coeff. } \\
\text { both up } & \text { both down } \\
\lim _{x \rightarrow \infty} f(x)=\infty & \lim _{x \rightarrow \infty} f(x)=-\infty \\
\lim _{x \rightarrow-\infty} f(x)=\infty & \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{array}
$$

Find the zeros of: $\quad y=3 x^{3}-5 x^{2}+2 x$

Given the zeros, write a polynomial equation of given degree:

degree 4, zeros: $-5,0,5$

The power of the factor determines the nature of the intersection at the point $x=a$.
(This is referred to as the multiplicity.)
Straight intersection:
$(x-a)^{1} \quad$ The power of the zero is 1 .
Tangent intersection :
$(x-a)$ even The power of the zero is even.
Inflection intersection: (like a slide through) $(x-a)$ odd The power of the zero is odd.

$$
\begin{aligned}
& \text { 2ero:3 } 3^{(x-3)^{2}(x+2)} \text { mut:2 } \\
& \text { 2ev:-2 muct:1 }
\end{aligned}
$$

Graph and decide end behavior

$$
\begin{aligned}
& \text { a) } f(x)=x^{3}+2 x^{2}-11 x-12 \\
& \downarrow_{x \rightarrow \infty} \\
& \lim _{x \rightarrow \infty} f(x)=\infty \quad \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{aligned}
$$

$$
\text { b) } g\left(\underset{\left.\bigcap_{\uparrow}\right)}{=}=2 x^{4}+2 x^{3}-22 x^{2}-18 x-35{ }_{x \rightarrow \infty} g(x)=\infty \quad \lim _{x \rightarrow-\infty} g(x)=\infty \quad .\right.
$$

$$
\begin{aligned}
& \text { Practice: } \\
& \text { Sketch the graph of: } y=x^{2}(x+5)^{3}(x+1)^{2} \\
& 0: 2 \text {-BouNce } \\
& -5: 3 \text {-hug/slide } \\
& -1: 2 \text {-BoNe } \\
& D: 7 \\
& \downarrow \\
& y=-5 x^{2}(x-2)^{2}(x+4)^{2}
\end{aligned}
$$

October 19, 2012

Use the Remainder \& Factor Thm. to find if the first polynomial is a factor of the second: (there are 2 ways) $x-3 ; x^{3}-x^{2}-x-15$

Rational Root Theorem: then all possible rational roots are:

$$
x= \pm \frac{\text { factors of constant }}{\text { factors of leading coefficient }}
$$

or $x= \pm \frac{p}{q}$ when
$p=$ factors of constant
$q=$ factors of leading coefficient

Prove all the zeros of $2 x^{4}-7 x^{3}-8 x^{2}+14 x+8$ must lie in the interval $[-2,5]$

Find all the zeros of: $2 x^{4}-7 x^{3}-8 x^{2}+14 x+8$
1.Rational(bod-Heopem
2. Exaph to find zereor
3. Byntheticay tivide 4 Divide unal Qualiatic 6. Solve the Quadratio

