Review 2

Long Division and Synthetic Division Remainder Theorem \& Factor Theorem

Remainder Theorem: $f(k)=$ remainder
this means - evaluate the function for the value of the suspected zero (plug it in for x)
Factor Theorem: if the remainder is 0 then you have found a root!!!
($\mathrm{f}(\mathrm{k})=0$)
Rational Root Theorem:
if all coefficients are integers and the constant is not 0 , then all possible rational roots are:
$\mathrm{x}= \pm \frac{\text { factors of constant }}{\text { factors of leading coefficient }}$

$$
\begin{gathered}
\text { Is }(x+4) \text { a factor of }\left(x^{3}-2 x^{2}+3 x-7\right) \\
-4 \\
(-4)^{3}-2(-1)^{2}+3(-4)-7 \\
-64-32-12-7 \neq \text { No }
\end{gathered}
$$

What is the remainder when
$\left(x^{3}-2 x^{2}+3 x-7\right) \div(x-1)$

$$
\begin{aligned}
& 1^{3}-2\left(1^{2}\right)+3(1)-7 \\
& 1-2+3-7 \\
& -5
\end{aligned}
$$

Fundamental Thm of Alg: an nth degree polynomial will have n zeros

$$
3 x^{7}+5 x^{2}-2 x+14
$$

(may be a combination of real and complex \& some zeros may be repeated)
Linear Factorization Thm: a polynomial ofnth 7 degree has n linear factors
(some factors may be complex)
Write a function with degree 3 and zeros
$-2,2$, and 3
$(x+2)(x-2)(x-3)$
$\left(x^{2}-4\right)(x-3)$

$$
x^{3}-3 x^{2}-4 x+12
$$

2.7 Solving Rational Equations

Rational Equation: an eq. (has an =) made up of 1 or more $\begin{array}{lll}\text { rational expressions } x \neq 0 & \frac{2 x}{x}+\frac{3 x}{x}=17 x & \frac{5=17 x}{5 C D: x} \\ \text { teps - } & 2+3=17 x & \frac{5}{17}=x\end{array}$

- find restrictions (why do I have restrictions?)
- Find the LCD
- Multiply each term in eq. by LCD to clear fractions
- solve the equation
- check for extraneous solutions

2.8 Solving Inequalities in One Variable

when solving an inequality - your answer is the x values for where the function (y values) meets the given conditions

$$
f(x)>0
$$

report the x values for
where the y's are greater

$$
\begin{aligned}
& \text { than zero } x<-1.5 \quad x>1 \\
& (-\infty,-1.5) \cup(1, \infty)
\end{aligned}
$$

Polynomial Inequalities

goal: solving where the polynomial is $(+)$ or (-)

Everything on 1 side and factored
Find all x-intercepts
Plot using open \& closed holes according to the inequality sign

Find the signs of the graph in the intervals b / w the intercepts (use a value in the interval)
Answer: the intervals according to the inequality signs (use the union symbol if more than 1 interval)

3.1 Exponential Functions

$$
\begin{array}{r}
y=a \cdot b^{x} \quad a \neq 0, b \neq 1 \\
b>0
\end{array}
$$

Used for growth and decay of: bacteria, carbon, populations

$$
\begin{aligned}
& y=a_{0} \bullet b^{x} \\
& a_{0} \text { is the inital value } \\
& b \text { is the base } \\
& b>1 \text { growth } \\
& 0<\mathrm{b}<1 \text { decay }
\end{aligned}
$$

Important Concepts
Domain and Range: $f(x)=\sqrt{3-x} \quad f(x)=\log _{3}(x-7)$

$$
\begin{aligned}
& 3-x \geq 0 \\
& \text { Regression } \\
& 3
\end{aligned}
$$ Linear and Exponential Regression

Q Finding Inverses

$$
-12<4 x+2 \leq 36
$$

Switch x \& y
Finding Max and Min with calculator $2 N D \rightarrow C A L C \rightarrow M A X / M I N$ Solving Exponential and logarithmic equations

Add and multiply complex numbers. Add like \#'/ $\mid R W / R$ Rw/i Transformations of graphs

Compounding Interest

