Unit 9 Review

9.1/9.3 Combinations, permutations and probability

$$_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Committee

Presidency

Probability =
$$\frac{\#of\ desired\ outcomes}{\#of\ possible\ outcomes}$$

16. How many ways can 4 red flowers, 3 yellow flowers, and 6 purple flowers be planted in a row?

17. What is the probability of drawing 3 kings and 2 queens from a standard deck of 52 cards?

How many "words" can you make with the letters from: MISSISSIPPI

9.2 The Binomial Theorem

Expand	$(x-2y)^4$	using the binomial theorem		

9.4 Sequences

Arithmatic

$$a_n = a + d(n-1)$$
non term of a rithmatic

Geometric

$$a_n = a_1 \cdot r^{n-1}$$

Explicit vs. Recursive

2, 4, 8, 16, 32,...

$$b_1 = -1$$
 and $b_{k+1} = b_k + 10$ for $k \ge 1$

Find an explicit formula for the sequence, find the 10th term

$$a_{0} = -6 + 4(n-1)$$

$$a_{0} = -6 + 4n - 4$$

$$a_{0} = -6 + 4n - 10$$

$$a_{0} = 4(10) - 10$$

$$a_{0} = 30$$

Find an explicit formula for the sequence, find the 10th term

2, 6, 18, 54, ...

$$r = 3$$
 $n = 2^{6}(3)$
 $n = 2 \cdot 3^{10-1}$

9.4 Series

$$\sum_{k=1}^{n} a_k$$

Sum of a finite arithmetic sequence $*S_n = \frac{n}{2}(a+a_n)$

$$S_n = \frac{n}{2}(a + a_n)$$

sum of finite

$$S_n = \frac{a(1-r^n)}{1-r}$$

Sum of infinite

$$\sum_{n=1}^{5} n^{2} - 1$$

$$\binom{2^{2}-1}+\binom{2^{2}-1}+\binom{3^{2}-1}+\binom{4^{2}-1}}{5n} = \sum_{k=0}^{4} \binom{\frac{1}{2}}{k}$$

$$+ \binom{5^{2}-1}=50$$

$$\sum_{j=3}^{5} j-j^{2}$$

$$\sum_{n=0}^{5} (-1)^{n} n^{3}$$

$$\sum_{n=1}^{\infty} 4\left(\frac{2}{3}\right)^{n-1} \qquad \sum_{k=0}^{\infty} 2\left(\frac{1}{5}\right)^{k}$$

$$|\frac{2}{3}| \ge 1 \text{ converges}$$

$$S = \frac{4}{1-r} = \frac{4}{1-2/3} + \frac{12}{12}$$

$$\sum_{n=0}^{\infty} 3\left(-\frac{1}{3}\right)^{n+1} \qquad \sum_{k=1}^{n} 2k + 3 + \frac{1}{2(n)+3} + \frac{1}{2(n)+3}$$

$$\left(2(1)+3\right) + \left(2(2)+3\right) + \frac{1}{2(n)+3}$$

$$4, \frac{-4}{3}, \frac{4}{9}, \frac{-4}{27}, \dots, 4\left(\frac{-1}{3}\right)^{10}$$

9.7/9.8 Statistics		2212	
Stem and Leaf plots	$\frac{1}{2}$	28 7	
Five number Summary EMINICIONAL COMMAND Standard Deviation COK. OX Variance 68-95-99.7 Rule (69/) WINI (69/) WINI (10/) WINI (10/	127.3 11.3 11.3 11.3	2303137	

The owners of a restaurant of formine that the number of minutes that a customer waits to be served is normally distributed with a mean of 6 minutes and a standard deviation of 2 minutes.

- 11. What is the probability that a randomly selected customer will be served in less than 4 minutes?
- 12. During a survey, 500 customers are served. How many would you expect to be served in less than 8 minutes?

13. If 1000 customers are served, how many would you expect to wait between 4 minutes and 10 minutes? 24.4777 = 81.50