Review \#1
P. 2

Distance Formula: distance between points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is 34

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Find the distance between $(1,5)$ and $(6,2)$

$$
\sqrt{(6-1)^{2}}+(2-5)^{2}
$$

Midpoint Formula: midpoint between points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Find the midpoint between $(1,5)$ and $(6,2)$

$$
\left(\frac{16 t}{2} p, \frac{+2}{2}\left(\frac{7}{2}, \frac{3}{2}\right)\right.
$$

P.3/P. 4

General Form: $A x+B y+C=0$
Slope Intercept: $y=\underline{m} x+b \neq$
Point-Slope: $y-y_{1}=m\left(x-x_{1}\right)$ 女\&
Vertical Line: $x=a$
Horizontal Line: $y=b$

Parallel and Perpendicular

1. Two nonvertical lines are parallel iff their slopes are equal.
$\begin{aligned} & \text { 2. Two nonvertical lines are perpendicular iff } \\ & \text { their slopes are opposite reciprocals. Iff }\end{aligned} m_{1}=-\frac{1}{m_{2}}$
P. 5

Quadratic Equations:
A Quadratic equation in x is one that can be written in the form $a, b, c \ni \mathbb{R}, a \neq 0$

$$
a x^{2}+b x+c=0
$$

Ways to solve Quadratic equations
Extracting Square Roots $(a x+b)^{2}=c$
Example $\sqrt{(2 x-1)^{2}}=\sqrt{9} \quad 2 x-1= \pm 3 \quad x=\frac{1 \pm 3}{2}$
Completing the Square
Solve by the Quadratic Formula

P. 6

Operations w/ Complex \#'s
add/subtract: combine like terms (real w/real and imaginary w/imaginary)

Divide: factor or use conjugates to simplify (remember i is a radical and cant stay in the denominator)

Complex Conjugates: 2 complex \#'s a \uparrow bi and a - bi are conjugates because when multiplied all imaginary parts are eliminated
$(3-2 i)(4+3 i)$

$$
\begin{gathered}
12+9 i-8 i-6 i^{2} \\
1218+i
\end{gathered}
$$

Absolute Value Inequalities

$\begin{array}{ll}\geq,> & \text { great"or" } \\ \leq,< & \text { less th"and" }\end{array}$
To solve absolute value inequalities:

1. Isolate the absolute value on the left.
2. Decide if you have a "or" or "and" inequality
3. Write the inequalities.
4. Solve the inequalities.
5. Graph to find "and" intersection / "or union"
6. Check your answer in the original problem
7. Write the answer in interval notation.

Solving Quadratic Inequalities

1. Make right side of the inequality 0
2. Decide if you have an "or" or "and" inequality
3. Solve the quadratic equation
4. Graph the quadratic and decide which values are above or below x-axis
5. Write in interval notation

$$
x^{2}-x-12>0
$$

Great"or" = Above \times-axis
Less th"and" = Below x-axis

1.2

y-intercepts: where the graph crosses the y- Function: when each domain value is paired with on axis and $x=0$ one range value (no repeating x 's)
x-intercepts: where the graph crosses the . graphically: passes the vertical line test x-axis and $y=0$

Domain \& Range (card)

Domain: x-values - input read x 's from left to rt. (smallest to largest)
*some functions have domain restrictions - can't divide by zero
to find: set the den. $=0$ and solve for x . These are the restrictions.
can't have a neg. \# in a sq. root
to find: set the radicand ≥ 0 and solve for x.

Range: y-values - output
read y's from bottom to top (smallest to largest)

Domain Restrictions:

1. Exclude any value that makes the $f(x)=2 x^{473}-2 x^{4}$
denominator $=0$
2. Exclude values that lead to the $\sqrt{ }$

$$
f(x)=\sqrt{3-x}
$$

3. Taking the Log of a negative number $D:(-\infty, 3]$

$$
f(x)=\frac{1}{\sqrt{3-x}}
$$

$$
0 \cdot(-\infty, 3)
$$

Asymptotes:
 $x+3$

vertical (VA): caused by dividing by 0
the graph approaches $-\infty$ or ∞
on each side of the asymptote
to find the asymptote set den $=0$ and solve
end behavior:(horizontal (HA) or oblique (OA)):
to find the asymptote - compare the degrees of the num and den. if top heavy (OA):
bottom heavy (HA): y = 0
equal (HA): divide coefficients
oblique: (more later)

Increasing, Decreasing and Constant

 - as you move from left to right the y-values increase as you move from left to right the y-values decrease - as you move from left to right the y-values do not changethis behavior is reported using interval notation for the x -values where the graph has a certain behavior
maximums

- relative (local)
- absolute (upper bound)
minimums
- relative (local)
- absolute (lower bound)

1.3

$$
f(x)=\sin x \quad f(x)=\sqrt{x}
$$

$f(x)=\ln x_{f(x)}=x^{2} \quad f(x)=e^{x}$
$f(x)=\frac{1}{x}$ $f(x)=\cos x$

Piecewise Functions

certain pieces of the function have specific behavior frequently: intervals (parts) of the domain are associated with different functions (related to continuity)

$$
f(x)=\left\{\begin{array}{l}
\frac{x+1}{} \text { if } x \leq 0 \\
x \quad \text { if } x>0
\end{array}\right.
$$

1.4

Composition of Functions - defined

$$
(f \circ g)(x)=f(g(x))
$$

Finding the domain of a composition 1. What is
$f(x)=x^{2}-1 \quad g(x)=\sqrt{x}$
$(g \circ f)(x)$
$(f \circ g)(x)$
the domain
of the first
function?
2. Find the domain
restrictions
of the new
function
3. Put them together
1.5

Finding an Inverse Algebraically (card)
Steps:

1. replace $f(x)$ or relation name w / y if not in that form
2. switch the x \& y in the eq. (just x \& y not signs, coefficients, or exponents)
3. Solve for y.
4. replace y with relation name $e^{-1}\left(f^{-1}\right.$ or $\left.^{-1}\right)$

$$
\begin{aligned}
& y=\frac{3 x}{2 x+7} x=\frac{3 y}{}(2 y+7) \\
& (2 y+1) \\
& (2 y+7+7 x=3 y \\
& 2 x+7 x=3 y \\
& -3 y-3 y \\
& 2 x y-3 y+7 x=-7 x \\
& 2 x y-3 y=-7 x \\
& \frac{y(2 x-3)}{2 x-3}=-7 x \\
& y=\frac{-7 x}{2 x-3}
\end{aligned}
$$

Domain changes $\mathrm{y}= \pm \underset{\uparrow}{ } \mathrm{Of}(\underset{\uparrow \uparrow}{ }$ Range changes $(\mathrm{x} \pm \Delta)) \pm \square$
\uparrow
\pm if (-) reflection over x-axis (range Δ)
$\Theta \quad$ vertical expansion or compression (range Δ)
$\Theta>1$ expansion
$\Theta<1$ compression
(\pm if (-) reflection over y-axis (domain Δ)
\# horizontal expansion or compression (domain Δ)
$0<\#<1$ expansion
\#>1 compression
$\Delta \quad$ translation left or right
(domain Δ)
(+) left (-) right

- translation up or down (range Δ)
$(+)$ up (-) down

2.1

Quadratic Equations:
Standard Form:

$$
y=a x^{2}+b x+c
$$

Graphing or Vertex Form:

$$
\begin{aligned}
y= & a(x-h)^{2}+k \\
& \text { vertex: }(\mathrm{h}, \mathrm{k}) \\
& \text { axis of symmetry } \mathrm{x}=\mathrm{h}
\end{aligned}
$$

2.3

End Behavior (polynomial)

End Behavior is determined by the degree of the polynomial and the coefficient of the leading term. The mathematical notation is written using limits.

$\lim f(x)=$
 $\underbrace{}_{x \rightarrow-\infty}$ left end

Odd Degree: the left \& right ends go in opp. directions (+) coeff.
(-) coeff.
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty \quad \lim _{x \rightarrow-\infty} f(x)=\infty$

Even Degree: both ends go in the same direction
(+) coeff. both up
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty$

multiplicity

The power of the factor determines the nature of the intersection at the point $x=a$. (This is referred to as the multiplicity.)

Straight intersection:
$(x-a)^{1} \quad$ The power of the zero is 1 .
Tangent intersection :
$(x-a)^{\text {even }}$ The power of the zero is even.
Inflection intersection: (like a slide through) $(x-a)^{\text {odd }}$ The power of the zero is odd.

