Domain & Range (card)

8

Domain: x-values - input

read x's from left to rt. (smallest to largest)

*some functions have domain restrictions - can't divide by zero

to find: set the den. = 0 and solve for x. These are the restrictions.

can't have a neg. # in a sq. root to find: set the radicand ≥ 0 and solve for x.

Range: y-values - output read y's from bottom to top (smallest to largest)

Asymptotes:

vertical (VA): caused by dividing by 0 the graph approaches $-\infty$ or ∞ on each side of the asymptote to find the asymptote set den = 0 and solve

end behavior:(horizontal (HA) or oblique (OA)):

to find the asymptote - compare the degrees of the num and den. if top heavy (OA):

bottom heavy (HA): y = 0 equal (HA): divide coefficients

oblique: (more later)

Increasing, Decreasing and Constant

- as you move from left to right the y-values increase
- as you move from left to right the y-values decrease
- as you move from left to right the y-values do not change

this behavior is reported using interval notation for the x-values where the graph has a certain behavior

10

$$f(x) = \frac{x^3}{4 - x^2}$$

Neither

14

Inverses Functions & Relations (card)

Def: 2 relations f & g are inverses iff both of their compositions are the identity function (y=x)

this means
$$f(g(x))=x \& g(f(x))=x$$

it does not mean they equal the same thing they must equal x!!

Notation:
$$f^{-1}(x)$$
: inverse of $f(x)$

(not an exponent, f is the name of a function not a variable!!)

Finding an Inverse Algebraically (card)

16

Steps:

- 1. replace f(x) or relation name w/ y if not in that form
- 2. switch the x & y in the eq. (just x & y not signs, coefficients, or exponents)
- 3. Solve for y.
- 4. replace y with relation name (f or g)

Inverses - graphically (card)

15

Inverse relations are reflections of each other over the line y = x (identity function)

mirror images over y = x

(2,3) (-1,-2) (4,1) (3,2) (-2,1) (7,4)

so if g(x) and f(x) are inverses then every point (a,b) if f(x) will be reflected onto its mirror image (b,a) in g(x) and vise versa

Property of inverse relations: Suppose $f \& f^{-1}$ are inverse relations, then f(a) = b iff $f^{-1}(b) = a$

Is the inverse a function???? How can I tell?

17

One-to-One (card)

- a function whose inverse is also a function

a function such that each x is paired with only one y and each y is paired with only one x

must pass the horizontal line test to be one to one

Transformations:

- helps us to understand the connections between the algebraic equation and its graph
- rigid same shape and size (translation, reflection, rotation)
- non-rigid distorts the shape by stretching and shrinking(dilation)

Domain changes Range changes **Transformation Equation**

$$y=\pm\Theta f(\pm\#(x\pm\Delta))\pm\blacksquare$$

- order matters with combinations of transformations
- when using a table multi. & divide first, add & subtract second

```
Domain changes
                    y=\pm\Theta f(\pm\#(x\pm\Delta))\pm\blacksquare
                                                         18
Range changes
           if (-) reflection over x-axis
                                                    (range \Delta)
      \Theta vertical expansion or compression (range \Delta)
             Θ>1 expansion
             Θ<1 compression
           if (-) reflection over y-axis
                                                  (domain \Delta)
           horizontal expansion or compression (domain \Delta)
x's lie
             0<#<1
                      expansion
               #>1 compression
           translation left or right
                                                   (domain \Delta)
             (+) left (-) right
          translation up or down
                                                  (range \Delta)
             (+) up (-) down
```

```
Domain changes
                    y=\pm\Theta f(\pm\#(x\pm\Delta))\pm\blacksquare
                                                         18
Range changes
           if (-) reflection over x-axis
                                                    (range \Delta)
      \Theta vertical expansion or compression (range \Delta)
             Θ>1 expansion
             Θ<1 compression
           if (-) reflection over y-axis
                                                  (domain \Delta)
           horizontal expansion or compression (domain \Delta)
x's lie
             0<#<1
                      expansion
               #>1 compression
           translation left or right
                                                   (domain \Delta)
             (+) left (-) right
          translation up or down
                                                  (range \Delta)
             (+) up (-) down
```

Polynomial Functions- Back

Name Form Degree

Zero Function f(x) = 0 Undefined

Constant Function $a \neq 0$ Linear Function $a \neq 0$ Quadratic Function $f(x) = ax^2 + (bx + c)$ $a \neq 0$ Quadratic Function $a \neq 0$

2.3 Polynomial Functions

Polynomial Functions

Standard Form of a polynomial function:

$$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + \dots + a_0$$

term: each part of the polynomial - separated by + or (-) leading term: term with the highest power or 1st term if written in standard form (poly. must be multiplied out to find this)

coefficient: number in front of the variable

constant: number w/o a variable

Degree: highest power found in any given term

End Behavior (polynomial)

21

End Behavior is determined by the degree of the polynomial and the coefficient of the leading term. The mathematical notation is written using limits.

$$\lim_{x \to -\infty} f(x) =$$
left end

Odd Degree: the left & right ends go in opp. directions (+) coeff. (-) coeff.

$$\lim_{x \to \infty} f(x) = \infty \qquad \qquad \lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty \qquad \lim_{x \to -\infty} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) =$$
right end

Even Degree: both ends go in the same direction

$$\lim_{x \to \infty} f(x) = \infty \qquad \qquad \lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \infty \qquad \qquad \lim_{x \to -\infty} f(x) = -\infty$$

Zeros(roots) and Mulitiplicity

Zeros: solutions for x when y = 0

can be found in the **factors** (x - a) of the polynomial.

How do we find the zeros??

factor

quadratic formula

use the calculator

 $f(x) = \frac{x^{2} + bx + 8}{(x^{2})^{2}}$ $f(x) = \frac{(x^{2} + b)(x + 2)}{(x^{2} + b)^{2}}$ $f(x) = \frac{x^{2} + bx + 8}{(x^{2} + b)^{2}}$

What are the differences between factors and zeros???

multiplicity

22

The **power** of the factor determines the nature of the intersection at the point x = a. (This is referred to as the multiplicity.)

Straight intersection:

 $(x - a)^1$ The power of the zero is 1.

Tangent intersection:

 $(x - a)^{\text{even}}$ The power of the zero is even.

Inflection intersection: (like a slide through) $(x - a)^{\text{odd}}$ The power of the zero is odd.

$$y = (x + 3)^{2} (x - 2)^{3} (x - 4)$$

What are the zeros??

What is the mulitplicity (power) of the zero?? How will it intersect the x-axis??

Dividing Polynomials - Long Division

#23

- Steps: 1. Write as a division problem w/ dividends & divisor in descending order, leaving spaces for missing terms in the dividend (0x)
- 2. Divide leading terms and write the result above the 1st term in the dividend $\frac{x}{1}$
- 3. Multiply the result from #2 by the divisor & write the product under the dividend
- 4. Put () around result from #3, distribute the subtraction sign & then add
- 5. Bring down remaining terms & repeat until there are no remaining terms in the dividend
- 6. Answer can be written in several ways see back

Dividing Polynomials - Synthetic division:

#24

Can only be used to divide by a linear function steps:

- 1. Write the terms of the dividend in descending order. Write the coeff. of the dividend in the first row using zeros for any missing terms not found in the dividend.
- 2. Write the zero, r, of the divisor (x-r),in the box.
- 3. Drop the 1st coeff. to the last row.
- 4. Multiply 1st coeff. by r & put product under the 2nd coeff.
- 5. Add product from #4 to 2nd coeff. & write the sum in the last row.
- 6. Repeat #4 & #5 until all coeff. have been used.
- 7. Write answer by putting variables behind the #'s in the last row. Start with 1 degree less than the dividend polynomial.

What is the significance of the answers??

#25

Remainder Theorem & Factor Theorem

Remainder Theorem: f(k) = remainder

this means - evaluate the function for the value of the suspected zero (plug it in for x)

Factor Theorem: if the remainder is 0 then you have found a root!!! (f(k) = 0)

Rational Root Theorem:

#138

if all coefficients are integers and the constant is not 0, then all possible rational roots are:

$$x = \pm \frac{\text{factors of constant}}{\text{factors of leading coefficient}} \pm \frac{1}{\sqrt{2}}$$

or
$$x = \pm \frac{p}{q}$$
 when

p = factors of constant [5]

q = factors of leading coefficient

2.5 Complex zeros & Fundamental Thm of Algebra

Top Half of Card 27

#27

Fundamental Thm of Alg: an nth degree polynomial will have n zeros

(may be a combination of real and complex & some zeros may be repeated)

Odd functions will always have at least one real zero -why??

Complex Conjugates: complex factors come in conjugate pairs (if 3i is a zero, - 3i is also)

Use the given zero to find the remaining zeros and write a linear factorization:

$$3-2i$$
; $x^4-6x^3+11x^2+12x-26$

Asymptotes:

check for holes before VA!! (by reducing the fraction if possible)

vertical (VA): caused by dividing by 0 the graph approaches $-\infty$ or ∞ on each side of the asymptote

to find the asymptote set den = 0 and solve

end behavior:(horizontal (HA) or oblique (OA)):

to find the asymptote - compare the degrees of the num and den. if top heavy (OA):

bottom heavy (HA): y = 0 equal (HA): divide coefficients

oblique: (more later)

Oblique/Slant Asymptotes

#29

top heavy rational functions have oblique asymptotes (end behavior models)

to find the degree of the end behavior model - divide the leading terms and reduce

the ends of $\frac{3x^5 - 4x^2 + 5}{2x^3 - 5x + 4}$ will behave like $\frac{3x^5}{2x^3} = \frac{3x^2}{2}$

to find the actual asymptote: divide the fractions

2.7 Solving Rational Equations

#31

Rational Equation: an eq. (has an =) made up of 1 or more rational expressions

steps -

- find restrictions (why do I have restrictions?)
- Find the LCD
- Multiply each term in eq. by LCD to clear fractions
- solve the equation
- check for extraneous solutions

3.1 Exponential Functions

#33

$$y = a \cdot b^x \qquad a \neq 0, b \neq 1 \\ b > 0$$

Used for growth and decay of: bacteria, carbon, populations

$$y = a_0 \cdot b^x$$
 a_0 is the inital value b is the base

$$b > 1$$
 growth $0 < b < 1$ decay

$$f(x) = a_0 \bullet b^x$$

$$f(x) = a_0 \cdot b^x$$
$$f(x) = a_0 \cdot (1 \pm r)^x$$

+ or - the % change. Is this an increase or

When looking at percent

increase or decrease - the

base is expressed as 100%

$$f(x) = 2 \cdot .73^{x}$$

decrease?

By what %?

3.3 Log Functions and their Graphs

#35

Logarithms

Def of Logarithm: if b > 0, $b \ne 0$, n > 0, there is a number p such that $\log_b n = p$ iff $b^p = n$

$$n = b^{p} \xrightarrow{\text{exponent, power}} p = \log_b n$$

$$\text{base - must match}$$
a number or variable

$$y = 2^x x = \log_2 y$$

p is the only value that can be negative

$$3^{2} = 9$$

$$2 = \log_{3} 9$$

$$\log_{16} 4 = \frac{1}{2}$$

$$2^{-3} = \frac{1}{8}$$
$$-3 = \log_2 \frac{1}{8}$$

Basic Properties of Logarithms

For $0 < b \ne 1$, x > 0, and any real number y,

$$\log_b 1 = 0$$
 because $\log_b b = 1$ because $\log_b b^y = y$ because $b^{\log_b x} = x$ because

Properties of Logs

36

for all positive #'s M, N, b, and x:

Product Rule

$$\log_b M \bullet N = \log_b M + \log_b N$$

Quotient Rule

$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

Power Rule

$$\log_b M^x = x \log_b M$$

Change of Base

#37

$$\log_b a = \frac{\log_x a}{\log_x b} \quad or \quad \frac{\ln a}{\ln b}$$

3.5 Solving Exp & Log Equations w/ matching bases

#38

If the bases are the same -

Properties of Logar ithms & exponents

Switch Forms & one-to-one

Graphing

If bu=bv, then u=V If logo u=logo v, then

Solving Exp & Log Equations w/o matching bases

#37back

When the bases don't match:

you must process to the other form:

onvert to the other form:

USE Inverse properties

$$|090=X|_{0}^{X}=0$$
 $|090=X|_{0}^{X}=0$
 $|090=X|_{0}^{X}=0$

Interest

#39

Compounded Annually: $A=P(1+r)^n$

Compounded k Times per year: $A = P(1 + \frac{r}{k})^{kt}$

Compounded Continuously: $A=Pe^{rt}$

