P. 7 Absolute Value Inequalities

Solving by intersection

$$
|t-8|=y
$$

$$
|t-8|=2
$$

$$
y \text {-intercept } \quad x \text {-intercept }
$$

$$
|0-8|=y \quad|t-8|=0
$$

$$
8=y \quad 6,10
$$

$$
\begin{gathered}
|t-8|=2 \\
t-8=2 \quad \frac{-(t-8)}{-1}=\frac{2}{-1} \\
t^{8}+8 \quad t^{-1}=-2 \\
t=10-18 \\
t=6
\end{gathered}
$$

Absolute Value Inequalities

$\begin{array}{ll}\geq, \geq & \text { great"or" } \\ \leq,< & \underbrace{\text { less th"and" }}\end{array}$
examples: decide if it is "and" or "or" and write the inequalities and

$$
\begin{aligned}
& |2 x-5| \leq 15 \\
& 2 x-5 \leq 15 \frac{-(2 x-5) \leq 15}{-1} \\
& 2 x-5 \geq-15 \\
& -15 \leq 2 x-5 \leq 15
\end{aligned}
$$

"or" inequality
"and" inequality
$|\underline{2 x-5}| \leq 15$

Less th"and"
The points on $y=2 x-5$ are less than the points of $y=15$ between the green lines
$|\underline{2-x}|>\underline{1}$

Great"or"
The points on 2-x are greater than the points on $y-1$ towards infinity of the orange lines

To solve absolute value inequalities:

1. Isolate the absolute value on the left.

$$
\begin{array}{r}
|a+c|-d>e \\
+d+d
\end{array}
$$

2. Decide if you have a "or") qr"and" inequality
3. Write the inequalities.
4. Solve the inequalities.
5. Graph to find "and" intersection / "or union"
6. Check your answer in the original problem
7. Write the answer in interval notation.

$$
\begin{aligned}
& \text { Examples: } 1 \text { oR } \\
& \begin{array}{l}
x+2 \mid \forall 5 \\
\frac{x+2>5}{-2-2} \\
x>3 \quad x<2<-5 \\
x>-7 \\
(-\infty,-7)(3, \infty)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& |x+2| \leq 8 \\
& \frac{-8 \leq x+2 \leq 8}{-2}-2 \\
& -10 \leq x \leq 6 \\
& -10,6]
\end{aligned}
$$

$$
\begin{array}{lll}
\frac{x+2>5}{-2} & \frac{x+2<-5}{-2} & \frac{-8 \leq x+2 \leq 8}{-2} \\
x^{2}-2 & x<-7 & -2
\end{array}
$$

$$
|2 x-3|+7<28
$$

Solving Quadratic Inequalities

1. Make right side of the inequality 0
2. Decide if you have an "or" or "and" inequality

Less th"and" = Below x-axis

Examples

$$
\begin{aligned}
& x^{2}-x-12(\otimes 0 \\
& x^{2}-x-12=0 \\
& (x-4)(x+3)=0 \\
& x-4=0 \quad x+3=0 \\
& x=4 \quad x=-3 \\
& (-\infty,-3) \cup(4, \infty)
\end{aligned}
$$

$$
\begin{gathered}
2 x^{2}+3 x \leq 20 \\
-20-20 \\
2 x^{2}+3 x-20(20) \text { and } \\
2 x^{2}+3 x-20=0 \\
2 x^{2}+8 x-5 x-20=0 \\
2 x(x+4)-5(x+4)=0 \\
(x+4)(2 x-5)=0 \\
x+4=0 \\
x=-4 x=0 \\
x=\frac{5}{2}=0 \\
{\left[-4, \frac{5}{2}\right]}
\end{gathered}
$$

$x^{2}+2 x+2<0$ Nosolution
 $x^{2}+2 x+2=0$
 $x^{2}+2 x+\frac{1}{2}=-2+1$
 $$
\sqrt{(x+1)^{2}} \nexists \sqrt{-1}
$$
 $$
x+1=l
$$

Find solutions by graphing

$$
x^{3}+2 x^{2}-1 \geq 0
$$

