Complex Number System

 standard form of a complex number

If
$\mathrm{b}=0$ the \# is real
$b \neq 0$ the \# is imaginary
a = 0 the \# is pure imaginary
Def of Equal Complex \#'s: $a+b i=c+d i$ iff $a=c$ and $b=d$ so 2 complex \#'s are equal if the real parts are equal \& imaginary parts are equal

What are the real and imaginary components

Find x and y :

$$
\begin{gathered}
\frac{3+5 i}{}=x+y i \\
x=3 \\
y=5
\end{gathered}
$$

REAL

$$
\begin{aligned}
& x-5 i=(2)-i)+(4)+2 y i) \\
& x-5 i=6-i+(2 y i \\
& x(5 i=6+i(-1+2 y) \\
& x=6 \\
& -5=-1+2 y \\
& +1+i \\
& -\frac{4}{2}=\frac{2 y}{2} \\
& y=-2
\end{aligned}
$$

$$
\sqrt{-1}=i \quad(\sqrt{-1})^{2}=-1
$$

Powers of i

$$
\begin{aligned}
& i=i^{5}=i^{9} \\
& i^{2}=i^{6}=i^{10} \\
& i^{3}=e^{7}=e^{11} \\
& i^{4}=i^{8}=e^{12}
\end{aligned}
$$

Pattern repeats every 4 iterations

$$
\begin{aligned}
& l^{l^{23}}=\dot{l}^{20} \cdot \ell^{3}=\dot{l}^{4} \cdot l^{4} \cdot l^{4} \cdot l^{4} \cdot l^{4} \cdot i^{3}=1 \cdot-i=-i \\
& l^{40}=1 \\
& l^{38}= \\
& l^{36} \cdot l^{2}=l^{2}=-1 \\
& \\
& l^{3}+l^{5}=\lambda+l=0
\end{aligned}
$$

Simplify:

1. $\sqrt{-81}= \pm 9 i$

2. $8 i \cdot 3 i=24 i^{2}=-24$
3. $\sqrt{-5} \cdot \sqrt{-20} \equiv \sqrt{100}= \pm 10$
4. $i^{12}=1$
5. $i^{43} i^{40} \cdot i^{3}=1 \cdot-i=-i$
6. Solve $\begin{array}{r}x^{2}+81=0 \\ - \text { हो) }\end{array}$

$$
x=1 i
$$

Operations w/ Complex \#'s

add/subtract: combine like terms (real w/real and imaginary w/imaginary)

Multiply: FOIL

Divide: factor or use conjugates to simplify (remember i is a radical and can't stay in the denominator)

Simplify:	$(3-2 i)(4+3 i)$
$(-4-i)-(5+2 i)=$	$12+9 i-8 i-6 i^{2}$
$\frac{-4-i-5-2 i}{-9}-3 i$	$18+i$
$\left(6-2 i^{2}\right)-(5+2 i)=$	
$6-2 i^{2}-5-2 i$	$(-2+3 i)(\sqrt{-9}+3)$
$6+2-5-2 \lambda$	$3-2 i$

Conjugates

Radical Conjugates: 2 radical expressions $a+c \sqrt{d}$ and $a-c \sqrt{d}$ are conjugates because when multiplied together the radicals are eliminated

Complex Conjugates: 2 complex \#'s a@ bi and a - bi are conjugates because when multiplied all imaginary parts are eliminated

$$
\begin{array}{llll}
& & \begin{array}{l}
3+2 i \\
(3-\sqrt{3})
\end{array} & (-5+\sqrt{5}) \\
(3-2 i) & -4-3 i \\
(-4+3 i)
\end{array}
$$

Complex solutions of quadratic equations

Quadratic Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
b^{2}-4 a c=\text { Discriminant }
$$

$$
b^{2}-4 a c>0=2 \text { Real solutions }
$$

$$
b^{2}-4 a c=0=1 \text { Real solution }
$$

$$
b^{2}-4 a c<0=2 \text { complex solutions }
$$

Solve for x :

$$
\begin{array}{r}
x^{2}+3 x-4=x-9 \\
-x+9-x+9
\end{array}
$$

$$
\begin{array}{ll}
a=1 \\
b=2 & x^{2}+(2 x+5)=0 \\
c=5 & x=\frac{-2 \pm \sqrt{2^{2}-4(1)(5)}}{2(1)} \\
& x=\frac{-2 \pm \sqrt{4-20}}{2} \\
& x=\frac{-2 \pm \sqrt{-16}}{2} \\
& x=-\frac{2 \pm 4 i}{2} \\
& x=-1 \pm 2 i
\end{array}
$$

