$$
\begin{aligned}
& \text { 9.5 Series } \\
& \text { Summation } \\
& a_{1}+a_{2}+a_{3}+\ldots+a_{n}
\end{aligned}
$$

(how do we write the sum of long lists of numbers?)
\sum sigma means summation

Summation notation: $\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$

$\sum_{n=1}^{3} k$

$\sum_{i=1}^{s} k^{2}$
$2+5+8+11+\ldots+29$

Sum of a Finite Arithmetic Sequence: \#72

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k} & =a_{1}+a_{2}+a_{3}+\ldots .+a_{n} \\
& =\frac{n\left(a_{1}+a_{n}\right)}{2} \\
& =\frac{n}{2}\left(2 a_{1}+(n-1) d\right)
\end{aligned}
$$

A theater has 8 seats in the first row. Each successive row has 2 additional seats. The top row has 24 seats. How many seats in a section?

Sum of a Finite Geometric Sequence: \#73

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k} & =a_{1}+a_{2}+a_{3}+\ldots+a_{n} \\
& =\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

Find the sum of:

$$
4, \frac{-4}{3}, \frac{4}{9}, \frac{-4}{27}, \ldots ., 4\left(\frac{-1}{3}\right)^{10}
$$

$$
3+6+12+\ldots+12,288
$$

def: sum of the terms in a sequence
sum: usually a total of a finite number of items added together
partial sums: the sums of a specific number of terms in the infinite sequence
(these are used to talk about the infinite series)
as you look at the partial sums, they approach a specific number
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=S$
$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \ldots$
$S_{1}=$
$S_{2}=$
$S_{3}=$
this is called a converging series
your partial sums could approach $\infty,-\infty$, or the limit doesn't exist $\quad \lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\infty,-\infty$, doesn't exist because the $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\infty,-\infty$, doesn't exist numbers oscillate
$3+6+9+12+\ldots$

2-2+2-2+....
this is called a diverging series

Infinite Geometric Series:

\#75
$\sum_{k=1}^{\infty} a \cdot r^{k-1}=S$ converges if $|r|<1$ it will converge to: $\quad S=\frac{a}{1-r} \quad \begin{aligned} & \mathrm{a}=\text { first term } \\ & \mathrm{r}=\text { common ratio }\end{aligned}$

Determine if the geometric series converges or diverges. If it converges, find its sum.
$\sum_{n=0}^{\infty}\left(-\frac{4}{5}\right)^{n}$
$\sum_{n=1}^{\infty}\left(\frac{\pi}{2}\right)^{n}$

$$
\sum_{n=0}^{\infty} 2\left(\frac{1}{5}\right)^{n}
$$

