9.5 Series

Summation

$$
a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

(how do we write the sum of long lists of numbers?)
\sum sigma
means summation

$$
\begin{aligned}
& \text { whereto end } \\
& \sum_{k=1}^{n} a_{k}=\frac{a_{1}+a_{2}+a_{3}+\ldots+a_{n}}{\text { equation }}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{5}^{5} 3 k=3(1)+3(2)+3(3)+3(4)+3(5)=45 \\
& \sum_{k=5}^{8} k^{2}=5^{2}+6^{2}+7^{2}+8^{2}=174 \\
& 2+5+8+11+\ldots+29 \\
& a=3 \quad a_{1}=2 \quad n=\text { ? } \\
& a_{n}=a_{1}+(n-1) d \\
& 29=2+(n-1) 3 a_{n}=3 n-1 \\
& \begin{array}{l}
-2-2 \\
27=3(n-1) a_{n}=3 n-3 n-1
\end{array} \\
& \frac{27}{3}=\frac{3(n-1)}{3} a_{n=3 n-1}^{2+3 n-3} \\
& \sum_{k=1}^{10} 3 k-1 \\
& a_{n}= \\
& \begin{array}{l}
a=n-1 \\
+1
\end{array} \\
& n=10
\end{aligned}
$$

Sum of a Finite Arithmetic Sequence:
$\sum_{k=1}^{\downarrow} a_{k}=a_{1}+a_{2}+a_{3}+\ldots .+a_{n}$

$$
=\frac{n\left(a_{1}+a_{n}\right)}{n}
$$

Test $\stackrel{n}{2}\left(2 a_{1}+(n-1) d\right)$
Firsterm

A theater has 8 seats in the first row. Each successive row has 2 additional seats. The top row has 24 seats. How many seats in a section?

$$
\begin{array}{lll}
a_{1}=8 \quad d=2 & a_{n}=24 & \frac{n}{2}\left(2 a_{1}+(n-1) d\right) \\
a_{n}=a_{1}+(n-1) d & & \frac{9}{2}(2(8)+(9-1)(2)) \\
24=8+(n-1) 2 & & =\frac{9}{2}(16+(6) \\
\frac{16}{2}=\frac{(n-1) 2}{2} & & =\frac{9}{2}(32) \\
8=n-1 & & =44 \\
+1 & +1 &
\end{array}
$$

Sum of a Finite Geometric Sequence: \#73

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots .+a_{n}
$$

memorize $*$

$$
=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
\begin{aligned}
& \text { Find the sum of: } a_{n}=a_{1} r^{r-1} \\
& 4, \frac{-4}{3}, \frac{4}{9}, \frac{-4}{27}, \ldots \ldots, 4\left(\frac{-1}{3}\right)^{10} \quad \frac{a\left(1-r^{n}\right)}{1-r} \\
& a=4, r=-\frac{1}{3}, n=11 \quad \frac{4\left(1-(-1 / 3)^{11}\right)}{1-(-1 / 3)^{2}} \sim 3 \\
& \sim 3+6+12+\ldots .+12,288 \\
& r=2 a_{1}=3 \quad a_{n}=a_{1} \cdot r^{n-1} \quad \frac{3\left(1-(2)^{13}\right)}{1-2} \\
& \frac{12,288}{3}=\frac{3(2)^{n-1}}{3}=24,573 \\
& 4096=2^{n-1} \\
& 2^{12}=2^{n-1} \\
& l
\end{aligned}
$$

def: sum of the terms in a sequence sum: usually a total of a finite number of items added together

* partial sums: the sums of a specific number of terms in the infinite sequence
(these are used to talk about the infinite series)
as you look at the partial sums, they approach a specific number
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=S$
$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$.
$S_{1}=1$
$5_{4}=1.825$
$S_{2}=1.5 \quad S_{5}^{5}=1.9$
$S_{3}=1.75$
this is called a converging series
your partial sums could approach $\underline{\infty},-\infty$, $\begin{aligned} & \text { or the limit } \\ & \text { doesn't exist } \\ & \text { because the }\end{aligned} \quad \lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\infty,-\infty$, doesn't exist
n en numbers oscillate
$3+6+9+12+\ldots$
$S_{1}=3 S_{2}=9 \quad S_{3} 18$
2-2+2-2+....
$S_{1}=2 S_{2}=6 S_{3}=2 S_{4}=0$
this is called a diverging series

Infinite Geometric Series:

$$
\sum_{k=1}^{\infty} a \cdot r^{k-1}=S \quad \text { converges if }|r|<1
$$

it will converge to:

$$
S=\frac{a}{1-r}
$$

$a=$ first term
$r=$ common ratio

Determine if the geometric series converges or diverges. If it converges, find its sum.

$$
\sum_{n=0}^{\infty}\left(-\frac{4}{5}\right)^{n} \quad\left|-\frac{4}{5}\right|<1 \quad \text { Converges } \frac{1}{1+\frac{4}{5}}=\frac{5}{9}
$$

$$
\sum_{n=1}^{\infty}\left(\frac{\pi}{2}\right)^{n} \quad\left|\frac{\pi}{2}\right|=1.57 \quad \text { Diverges }
$$

$$
\sum_{n=0}^{\infty} 2\left(\frac{1}{5}\right)^{n} \text { converges }
$$

$$
\frac{2}{\frac{5}{5} 1-\frac{1}{5}} \quad \frac{2}{4}
$$

