9.4 Sequences

Sequence Vocab.
\#68
sequence - an ordered progression of numbers
finite - A sequence that ends
infinite - A seguence that doesn't end

$$
5,10,15,20,25
$$

Finite
2, 4, 8, 16, 32, .., $2^{\mathrm{k}}, \ldots$ intinite

$$
\begin{aligned}
& \text { explicit - each term is defined independently } \\
& 9,14,19, \ldots \\
& \text { rule: } \quad a n=4+5 n \\
& \left\{a_{n}\right\} \\
& a_{1}=4+5(1)=9 a_{2}=4+5(2)=14 a_{3}=19 \quad a_{100}=504 \\
& \text { recursive- use the previous term to define the } \\
& \text { following terms } \\
& 5,1,-3,-1 \\
& \text { rule: } \quad \mathrm{a}^{1}=5 \\
& \mathrm{a}^{\mathrm{n}+1}=\mathrm{a}^{\mathrm{n}}-4 \\
& \begin{array}{c}
a_{3}=\sqrt{a_{2}+1}=a_{2}-4 \\
1-4 \\
-3
\end{array} \\
& a_{1}=5 \quad a_{2}=a_{1+1}=a_{1}-4=5-4=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d}=\text { common difference } \\
& \mathrm{n}=\text { term number } \\
& \mathrm{a}=\text { term }
\end{aligned}
$$

Memorize a_{1}
For Frecursive rule: $a_{n}=a_{n-1}+d \quad n \geq 2$ test!

Find the common difference, a recursive rule, and an explicit rule for the following sequences:

$$
\begin{aligned}
& \begin{array}{ll}
-6,-2,2,6,10, \ldots d=4 \\
444 \text { \& } & a_{n}=a_{1}+(n-1) d
\end{array} \quad \begin{array}{|l|l|}
a_{1}=-6 & a_{n}=a_{n-1}+d \\
a_{n}=a_{n-1}+4 \\
\hline
\end{array} \\
& 444 \text { 4 } a_{n}=a_{1}+(n-1) d \\
& =-b+(n-1) 4 \\
& \begin{array}{l}
a=-6+4 n-4 \\
a_{n}=4 n-10
\end{array} \\
& 5,2,-1,-4,-7, \cdots d=-3 \\
& a_{1}=5 \quad a_{n}=a_{n-1}-3 \\
& a_{n}=5+(n-1)(-3) \\
& =5-3 n+3 \\
& 910=3(10)+8 \\
& a_{n}=-3 n+8 \\
& =-30+8=-22
\end{aligned}
$$

$$
\begin{aligned}
& r=\text { common ratio } \\
& n=\text { term number } \\
& a=\text { term }
\end{aligned}
$$

*recursive rule: $a_{n}=a_{n-1} \bullet r \quad n \geq 2$

Find the common ratio, a recursive rule, and an explicit rule for the following sequences:

$$
\begin{array}{ll}
2,6,18,54, \ldots r=3 & a_{1} \quad a_{n}=a_{n-1} \cdot r \\
33 & a_{n}=a_{1} \cdot r^{n-1}
\end{array} \begin{array}{ll}
a_{1}=2 a_{n}=3 a_{n-1} \\
a_{10}=2 \cdot 3^{(10-1)} & a_{n}=2 \cdot 3^{n-1}
\end{array}
$$

Find the first 5 terms of the recursive sequence:

$$
\begin{aligned}
b_{1}=-1 \text { and } b_{k+1}=b_{k}+10 & \text { for } k \geq 1 \\
b_{2}=9 & a_{n}=a_{1}+(n-1) d \\
b_{3}=19 & =-1+(n-1)(p) \\
b_{4}=29 & \\
b_{5}=39 &
\end{aligned}
$$

