Most of the formulas we have today are the result of mathematicians noticing patterns. The binomial theorem is one such pattern.

Expand $(a+b)^{n}$ for $n=0,1,2,3,4, \& 5$

Pascal's Triangle

Binomial Coefficient

The binomial coefficients that appear in the expansion of (a $+b)^{n}$ are the values of ${ }_{n} C_{r}$ for $r=1,2,3,4, \ldots, n$.

A classical notation for ${ }_{n} C_{r}$ is : $\binom{n}{r}$ meaning "n choose r "
${ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad\binom{15}{11}$

Expand pascal's triangle to find the next row.

Find the coefficient of x^{10} in the expansion of $(x+2)^{15}$

The Binomial theorem

\#17
For any positive integer n,

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\left(\begin{array}{l}
n
\end{array}\right) a^{n-1} b+\ldots\binom{n}{r} a^{n-1} b^{r}+\ldots\binom{n}{n} b^{n}
$$

$$
\text { whet }\binom{n}{r}={ }_{n} c_{r}=\frac{n!}{r!(n-r)!}
$$

$$
\left(x^{2}+y\right)^{3}=
$$

$$
\left(3 x-y^{2}\right)^{5}
$$

