Most of the formulas we have today are the result of mathematicians noticing patterns. The binomial theorem is one such pattern.

$$
\begin{aligned}
& (a+b)^{0}=1 \quad \text { Expand }(a+b)^{n} \text { for } n=0,1,2,3,4, \& 5 \\
& (a+b)^{2}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 b^{2} a+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} \\
& (a+b)^{6}= \\
& \text { powers } a \text { : } 6 \ldots .0 \text { Expolenestadd: } 6 \\
& \text { powers: } 0 \ldots 615+2 \text { coefficents:1, } 6
\end{aligned}
$$

Pascal's Triangle

$$
\begin{aligned}
& 1 \\
& 1 \quad 1 \\
& 1 \quad 2 \quad 1 \\
& 1331 \\
& 46 \\
& 6 \quad 4 \quad 1 \quad{ }_{0} C_{0} \\
& { }_{1} C_{0} \quad{ }_{1} C_{1} \\
& { }_{2} C_{0} \quad{ }_{2} C_{1} \\
& { }_{2} C_{2} \\
& { }_{3} C_{0} \quad 3^{C_{1}} \quad 3^{C_{2}} \quad 3^{C_{3}}
\end{aligned}
$$

Binomial Coefficient

The binomial coefficients that appear in the expansion of $(a+b)^{n}$ are the values of ${ }_{n} C_{r}$ for $r=1,2,3,4, \ldots, n$.

A classical notation for ${ }_{n} \mathrm{C}_{\mathrm{r}}$ is : $\binom{n}{r}$ meaning "n choose r "

$$
\begin{aligned}
{ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad\binom{15}{11} & { }_{15} C_{11} \\
& =136
\end{aligned}
$$

Expand pascal's triangle to find the next row.

Find the coefficient of x^{10} in the expansion of $(x+2)^{15} \quad n=15$

$$
\begin{aligned}
\binom{15}{10} x^{10}\left(2^{5}\right) & ={ }_{15}^{6} 10^{\circ} 0^{5} x^{10} \\
& =96,096
\end{aligned}
$$

The Binomial theorem \#b7
For any positive integer n,

$$
\begin{aligned}
& (a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+.+\binom{n}{r} a^{n-r} b^{r}+\ldots+\binom{n}{n} b^{n} \\
& \text { Whet }\binom{n}{r}={ }_{n} C_{r}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left(x^{2}+y\right)^{3}=\quad n=3 \\
\binom{3}{0}\left(x^{2}\right)^{3}+\binom{3}{1}\left(x^{2}\right)^{2}\left(y^{\prime}\right)+\binom{3}{2}\left(x^{2}\right)\left(y^{2}\right)^{2}+\binom{3}{3}(y)^{3}
\end{array} \\
& 1 x^{6}+3 x^{4} y+3 x^{2} y^{2}+1 y^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(3 x-y^{2}\right)^{5} \quad n=5 \\
& \binom{5}{0}\left(3 x^{5}+\binom{5}{1}(3 x)^{4}\left(-y^{2}\right)^{2}+\binom{5}{2}\left(3 x^{3}-\left(-y^{2}\right)^{2}+(5)\left(3 x^{2}\right)(-3)^{2}\right)+\binom{5}{4}\left(3 x^{1}\right)^{1}\left(-y^{4}\right)^{4}+(5)(5)\left(-y^{2}\right)^{5}\right. \\
& 1.3 x^{5}-5 \cdot 3 x^{4} y^{2}+10 \cdot 3^{3} x^{3} y^{4}-10 \cdot 3^{2} x^{2} y^{6}+5 \cdot 3 x y^{8}-1 y^{10} \\
& 243 x^{5}-405 x^{4} y^{2}+270 x^{3} y^{4}-90 x^{2} y^{6}+15 x y^{8}-y^{10} \\
& (-\#)^{O D D}=(-\#) \\
& (-H)^{\text {even }}=(+H)
\end{aligned}
$$

