9-4 Solving Quadratics with Complex Numbers
 Quadratic Formula Review

Get the equation in standard form, then plug in a, b, and c.

Standard form: $\quad a x^{2}+b x+c=0$
Quadratic Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Complex solutions of quadratic equations
$\sqrt{b^{2}-4 a c}$
positive
$b^{2}-4 a c>0$ Real solution
$b^{2}-4 a c=0$ Real solution
$b^{2}-4 a c=0$
negative
$b^{2}-4 a c<0$ Remplex solution (will have an i)

What kind of number is it if we get a negative inside the radical?
complex / imaginary \#'s

When we use the Quadratic Formula, we can get numbers that have both real and imaginary parts.

Solve using the Quadratic Formula.

$$
\begin{aligned}
& x^{2}-4 x=-13 \\
& x^{2}-4 x+13=0 \\
& a=1 \quad b=-4 c=13 \\
& x=\frac{4 \pm \sqrt{16-4(13)}}{2} \\
& x=\frac{4 \pm \sqrt{-36}}{2} \\
& x=\frac{4 \pm 6 i}{2} \\
& x=2 \pm 3 i
\end{aligned}
$$

Solve for x :

$$
\begin{aligned}
& x^{2}+3 x-4=x-9 \\
& -x+9-x+9 \\
& x^{2}+2 x+5=0 \\
& a=1 \quad b=2 \quad c=5 \\
& \frac{x=-2 \pm \sqrt{4-4(5)}}{2} \\
& x=\frac{-2 \pm \sqrt{-16}}{12} \\
& x=\frac{-x \pm 14}{x} \\
& x=-1 \pm 2 i
\end{aligned}
$$

