

add/subtract: combine like terms (real w/real and
imaginary w/imaginary)
Multiply: FOIL
Divide: factor or use conjugates to simplify (remember i is a
radical and can't stay in the denominator)

$$
\begin{aligned}
& \frac{(4-3 i}{2+2 i}+(-2+5 i) \\
& 2+2 i \\
& \left(\frac{4+\sqrt{-25}}{-2+i}\right)+(-6-\sqrt{-16})
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
(4-\sqrt{-4})+(-7+\sqrt{-9}) \\
-3+l i \\
\text { You Ty } \\
(4-2 i)-(-2+7 i) \\
6-9 i
\end{array}
\end{aligned}
$$

Remember from before:

$\sqrt[4]{a} \sqrt[n]{b}=\sqrt[n]{a b}$
Only works when $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers
DOES NOT WORK When
this meas hat There is a negative
$\sqrt{a} \sqrt{b} \neq \sqrt{a b}$ if $a<0$ or $b<0$

Multiply

$$
(3+2 i)^{2}=(3+2 i)(3+2 i)
$$

