The Quadratic Formula

Content Objective: The student
recognizes the advantages of being able
to use the quadratic formula for any quadratic equation.

Language Objective: Students will communicate the quadratic formula by singing a song and practicing
algorithmic procedures with a partner.
Student should also be able to
communicate using the following
vocabulary:
Quadratic Formula
roots
solution
zeros

Solve each equation by "Completing the Square."

1. $x^{2}-2 x-24=0$
$\frac{-2}{2}(-1)^{2}=1$
$x^{2}-2 x+1-24-1=0$
$(x-1)^{2}-25=0$
$+25+25 \sqrt{(x-1)^{2}} \sqrt{25}$
2. $x^{2}-8 x+15=0$
$\frac{-8}{2}=(-4)^{2} x^{2}-8 x+16=-15+16$
$2=16 \sqrt{(x-4)^{2}} \sqrt{1}$

$$
\begin{array}{ll}
4)^{2} \geq 1 & x=1+4=5 \\
x-4= \pm 1 & x=1+4=3
\end{array}
$$

3. $3 a^{2}-6 a-34=0$
$\frac{-2}{2}-(-1)^{2}=1$
$3\left(a^{2}-2 a+1\right)=34+3$
$\begin{aligned} 3(a-1)^{2} & =\frac{37}{3} \\ \sqrt[3]{(a-1)^{2}} & =\frac{\sqrt[3]{3}}{3}\end{aligned}$

$$
a-1= \pm \sqrt{\frac{37}{3}}
$$

4. $4 n^{2}+11 n=15 \quad a=1 \pm \sqrt{\frac{37}{3}}$

$$
\begin{aligned}
& \text { Solve Completing the Square Yikes! } \\
& \begin{array}{l}
4\left(n^{2}+\frac{11}{4} n+\frac{121}{4 n^{2}+11 n=15}\right) \\
4\left(n+\frac{11}{8}\right)^{2} \\
4\left(\frac{11}{4}\right) \\
\left(n+\frac{11}{2}\right) \\
\left(n+\frac{316}{8}\right)^{2}
\end{array}=\frac{121}{16} \\
& 4
\end{aligned}
$$

Quadratic Formula
 $\left.a \mid x^{2}+b x+c\right]=0$
 $$
x=\frac{-\underline{b} \pm \sqrt{\underline{b}^{2}-4 \underline{a} \underline{c}}}{2 \underline{a}}
$$

Solve each equation using the Quadratic Formula

$$
\text { 1. } \begin{aligned}
& x^{2}-2 x-24=(0) \\
& a=1 \quad b=-2 c=-24 \\
& x=-\frac{(-2)+\sqrt{(-2)^{2}-4(1)(-24)}}{2(1)}=\frac{2 \pm \sqrt{4+96}}{}=\frac{2 \pm \sqrt{100}}{2}=\frac{2 \pm 10}{2}
\end{aligned}
$$

$$
\text { 2. } x^{2}-8 x+15=0
$$

2. $x^{2}-8 x+15=0 \quad=1+5$

$$
\begin{aligned}
& a=1 \quad b=-8 \quad=15 \\
& x=\frac{8 \pm \sqrt{64-4(1)(15)}}{2(1)}=\frac{8 \pm \sqrt{64-60}}{2}=\frac{8 \pm \sqrt{4}}{2}=\frac{8 \pm 2}{2} \\
&=4+1
\end{aligned}
$$

$$
a=1 \quad b=-8 \quad c=15
$$

$\begin{aligned} x=\frac{8 \pm \sqrt{64-4(1)(15)}}{2(1)}=\frac{8 \pm \sqrt{64-60}}{2}=\frac{8 \pm \sqrt{4}}{2} & =\frac{8 \pm 2}{2} \\ & =-4+1 \\ & =5,3\end{aligned}$

$$
\begin{aligned}
& =4+1 \\
& =5,3
\end{aligned}
$$

Practice (simplify completely):
Solve for x.

$$
\begin{aligned}
& \begin{array}{c}
x^{2}-2 x-10=0 \\
a=1 \quad b=-2 \\
x=\frac{2 \pm \sqrt{4-4(1)(-10)}}{2(1)} \quad x=-2 \pm \sqrt{4+40} \\
x=\frac{2 \pm \sqrt{44}}{2}=\frac{2 \pm 2 \sqrt{11}}{2}=1 \pm \sqrt{11}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 3 x^{2}+4 x+8=2 x^{2} \\
& -2 x^{2} \\
& x^{2}+4 x+8=7 \\
& x^{2}+4 x+1=-7 \\
& a=1=-4 \\
& x=\frac{1}{b}=-4 \\
& x=\frac{-4 \pm \sqrt{12}}{2} \\
& x=\frac{-4 \pm 2 \sqrt{3}}{2} \\
& x=-2 \pm \sqrt{3}
\end{aligned}
$$

