8.3 Hyperbolas

hyperbola: a set of all points in a plane whose distances from two fixed points(foci) in the plane have a constant difference.

focal axis - line through the foci
center - midpoint of the seg. connecting foci or vertices
vertices - points where hyperbola intersects the focal axis
asymptotes - the 2 guidelines the hyperbola approaches but never crosses
transverse axis - a line segment 2a units long whose endpts lie on the vertices (through the foci)
conjugate axis - line segment 2 b units long that is \perp to the transverse axis
pythagorean relationship: $c^{2}=a^{2}+b^{2}$

Hyperbola - Standard Form
\#87 horizontal

Standard Eq	$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
Center	(h, k)
Foci	$(h \pm c, k)$
Vertices	$(h \pm a, k)$
Asymptotes	$y= \pm \frac{b}{a}(x-h)+k$
Pythagorean Relationship	$a^{2}+b^{2}=c^{2}$

	Hyperbola - Standard Form vertical
Standard Eq	$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
Center	(h, k)
Foci	$(h, k \pm c)$
Vertices	$(h, k \pm a)$
Asymptotes	$y= \pm \frac{a}{b}(x-h)+k$

Find the center, vertices and foci of the hyperbola

$$
\frac{x^{2}}{16}-\frac{y^{2}}{7}=1
$$

$C:(0,0)$
horizontal-change X coordinate

$$
\begin{aligned}
a^{2} & =16 \\
a & = \pm 4 \\
16+7 & =c^{2} \\
c & = \pm \sqrt{23}
\end{aligned} \quad F:(\pm \sqrt{23}, 0)
$$

 $\frac{x^{2}}{16}-\frac{y^{2}}{49}=1$
$C:(0,0)$
Transverse 29
$b=a^{2}$
$a= \pm 4$
conjugat
$49=b^{2}$
$b=7$
$V:(\pm 4,0)$
$F:(\pm \sqrt{65}, 0)$
$16+49=c^{2} s$

Find the center, vertices, and focia Sketch a graph.

$$
\frac{4(y-1)^{2}}{\frac{(y-1)^{2}}{3}-}
$$

$$
\begin{gathered}
\text { Transin } \\
9=a^{2} \\
a=3
\end{gathered}
$$

$$
\begin{aligned}
& v:(3,-2),(3, \\
& \text { conjugate: } 2 b
\end{aligned}
$$

$$
\begin{aligned}
& b^{2}=4 \\
& b+42 \\
& 9+4=c^{2}
\end{aligned}
$$

$F:(3, \pm \sqrt{13})$

Write the equation of the hyperbola:
foci: $(\pm 3,0)$ †ORLOONTAL $C:(0,0)$
trans. axis length $4=2 a$

$$
\begin{aligned}
& a=2 \quad \\
& \frac{x^{2}}{4}-\frac{y^{2}}{5}=1
\end{aligned}
$$

$$
9=4+b^{2}
$$

$$
5=b^{2}
$$

Write the equation of the hyperbola: VERTICAL trans axis endpts: $(2,3)$ and $(2,-1)$ conj. axis $=6=2 b$ $4=2 a \quad C:(2,1)$ $b=3$

$$
a=2
$$

$$
\frac{(y-1)^{2}}{4}-\frac{(x-2)^{2}}{9}=1
$$

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

when A is neg - vertical hyp. or C is neg - horizontal hyp.

Steps:

1. move variables to left \& constants to right side of eq. to complete the square
2. Group like variables
3. If $x^{2} \& x$ terms, complete sq. for x 's
4. If $y^{2} \& y$ terms, complete sq. for y 's
5. Write each completed sq. in factored form.
6. Need to have 1 on rt. so divide both sides by value on rt.
7. Simplify
8. result is in graphing form

Write the equation of the hyperbola in standard form:

$$
\begin{gathered}
5 x^{2}-4 y^{2}-40 x-16 y=36 \\
5 x^{2}-40 x-4 y^{2}-16 y=36 \\
5\left(x^{2}-8 x+16\right)-4\left(y^{2}+4 y+4\right)=36+5(16)-4(4) \\
\left.\frac{-8}{2}=-4\right)^{2} \frac{5(x-4)^{2}-4(y+2)^{2}}{100}=\frac{100}{100} \\
\frac{4}{2}=(2)^{2} \begin{array}{c}
100 \\
\frac{(x-4)^{2}}{20}-\frac{(y+2)^{2}}{25}=1
\end{array} .
\end{gathered}
$$

