8.3 Hyperbolas

#86

hyperbola: a set of all points in a plane whose distances from two fixed points(foci) in the plane have a constant difference.

focal axis - line through the foci

center - midpoint of the seg. connecting foci or vertices

vertices - points where hyperbola intersects the focal axis

asymptotes - the 2 guidelines the hyperbola approaches but never crosses

transverse axis - a line segment 2a units long whose endpts lie on the vertices (through the foci)

conjugate axis - line segment 2b units long that is \perp to the transverse axis

pythagorean relationship: $c^2 = a^2 + b^2$

$$c^2 = a^2 + b^2$$

#87

Hyperbola - Standard Form horizontal

Standard Eq	$\frac{\left(x-h\right)^2}{a^2} - \frac{\left(y-k\right)^2}{b^2} = 1$
Center	(h, k)
Foci	$(h\pm c,k)$
Vertices	$(h\pm a,k)$
Asymptotes	$y = \pm \frac{b}{a} (x - h) + k$
Pythagorean Relationship	$a^2 + b^2 = c^2$

Standard Eq $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ Center (h, k) Foci $(h, k \pm c)$ Vertices $(h, k \pm a)$ Asymptotes $y = \pm \frac{a}{b}(x-h) + k$ Pythagorean Relationship $a^2 + b^2 = c^2$	Hyperbola - Standard F vertical		rd Form #87 - back
Foci $(h, k \pm c)$ Vertices $(h, k \pm a)$ Asymptotes $y = \pm \frac{a}{b}(x-h) + k$ Pythagorean $2 + 1 = 2$	Standard Eq	$\frac{\left(y-k\right)^2}{a^2} - \frac{\left(x-h\right)^2}{b^2} = 1$	(h,kta)
Vertices $(h, k \pm a)$ Asymptotes $y = \pm \frac{a}{b}(x-h) + k$ Pythagorean 2 12 2	Center	(h, k)	(h, K-c)
Asymptotes $y = \pm \frac{a}{b}(x-h) + k$ Pythagorean 2 2 2	Foci	$(h, k \pm c)$	
Pythagorean 2 12 2	Vertices	$(h, k \pm a)$	
	Asymptotes	$y = \pm \frac{a}{b} (x - h) + k$	
•		$a^2 + b^2 = c^2$	

Find the center, vertices and foci of the hyperbola

$$\frac{x^2}{16} - \frac{y^2}{7} = 1$$

C: (0,0)
honizontal-change X coordinate

$$a^2 = 16$$
 V: (±4,0)
 $a = \pm 4$ $16+7=c^2$ $f: (\pm \sqrt{23},0)$
 $c = \pm \sqrt{23}$

Write the equation of the hyperbola:

foci:
$$(\pm 3,0)$$
 HDRIZONTAL $C:(0,0)$

trans. axis length 4 = 20

$$1-2$$
 $C=3$

$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$

Write the equation of the hyperbola:
$$VERTICAL$$
 trans axis endpts: (2, 3) and (2, -1) conj. axis = 6=2b $Y=2A$ $C:(2,1)$

$$\frac{(y-1)^{2}-(x-2)^{2}-1}{4}$$

Hyperbola - General Form

#88

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$

when A is neg - vertical hyp. or C is neg - horizontal hyp.

Steps:

- 1. move variables to left & constants to right side of eq. to complete the square
- 2. Group like variables
- 3. If x^2 & x terms, complete sq. for x's
- 4. If y² & y terms, complete sq. for y's
- 5. Write each completed sq. in factored form.
- 6. Need to have 1 on rt. so divide both sides by value on rt.
- 7. Simplify
- 8. result is in graphing form

Write the equation of the hyperbola in standard form:

$$5x^{2} - 4y^{2} - 40x - 16y = 36$$

$$5x^{2} - 40x - 4y^{2} - 16y = 36$$

$$5(x^{2} - 8x + 16) - 4(y^{2} + 4y + 4) = 36 + 5(6) - 4(4)$$

$$-8 + (4)^{2} - 5(x - 4)^{2} - 4(y + 2)^{2} = 100$$

$$-(4 - 4)^{2} - (4 + 2)^{2} = 1$$

$$-(4 - 4)^{2} - (4 + 2)^{2} = 1$$

$$-(4 - 4)^{2} - (4 + 2)^{2} = 1$$