8.2 Ellipses

#83

ellipse: a set of all points in a plane whose distances from two fixed points (foci) in the plane have a constant sum.

foci - focus plural (always on major axis)

focal axis - line through the foci

center - midpoint of the foci (intersection of major & minor axes)

vertices - points where ellipse intersects the major axis

major axis - chord through the foci (longer)

minor axis - chord through the center perpendicular to the major axis (shorter)

pythagorean relationship: $a^2 = b^2 + c^2$

Ellipse - Standard form horizontal		
Standard Eq	$\frac{\left(x-h\right)^2}{a^2} + \frac{\left(y-k\right)^2}{b^2} = 1$	Chark War
Center	(h, k)	Ch-ck (hk) (h
Foci	$(h\pm c,k)$	20
Vertices	$(h\pm a,k)$	
Focal axis	y = k	
Pythagorean Relationship	$a^2 = b^2 + c^2$	

Ellipse - Standard form vertical		#84- back	
Standard Eq	$\frac{\left(y-k\right)^2}{a^2} + \frac{\left(x-h\right)^2}{b^2} = 1$	(h,KM) (h,Ktc)	
Center	(h, k)	(hk	
Foci	$(h, k \pm c)$		
Vertices	$(h, k \pm a)$	(h/K-a)	
Focal axis	x = h		
Pythagorean Relationship	$a^2 = b^2 + c^2$		

Find the vertices and foci of
$$4x^2 + 9y^2 = 36$$

 $C(h,k)$
 $V(h\pm a,k)$
 $V(h\pm a,k)$
 $C: (0,0)$
 $V: (0\pm 3,0)$
 $(\pm 3,0$

Find the vertices and foci of

$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$

$$16 = 7 + 2$$
 $\sqrt{9} = 2$
 $\sqrt{2} = + 2$

C: (0,0)

Write the equation of the ellipse:

Major axis endpts: $(\pm 5,0)$ (5-20) minor axis length 4=2b (5-20)

$$\frac{(x-h)}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1$$

$$\frac{(x-h)}{a^{2}} + \frac{(y^{2}-k)^{2}}{b^{2}} = 1$$

Write the equation of the ellipse: foci: (1, -4) and (5, -4)major axis endpts: (0, -4) and (6, -4) 5 = h + c a = 3 h + a, k b = h + 3 5 = 3 + c h = 3 2 = c h + a, h = 3 2 = c h + a, h = a2 = c $a = b^2 + c^2$ $a = b^2 + c^2$

Ellipse - General Form

#85

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$

Steps:

- 1. move variables to left & constants to right side of eq. to complete the square
- 2. Group like variables
- 3. If x^2 & x terms, complete sq. for x's
- 4. If y² & y terms, complete sq. for y's
- 5. Write each sq. in factored form.
- 6. Need to have 1 on rt. so divide both sides by value on rt.
- 7. Simplify
- 8. result is in graphing form

Write the equation of the ellipse in standard form:

$$9x^{2} + 16y^{2} + 54x - 32y - 47 = 0$$

$$+47 + 47$$

$$9x^{2} + 64x + 16y^{2} - 32y = 47$$

$$9(x^{2} + 6x + 9) + 16(y^{2} - 2y + 1) = 47 + 9(9 + 160)$$

$$9(x + 3)^{2} + 16(y - 1)^{2} = 144$$

$$(x + 3)^{2} + (y - 1)^{2} = 1$$