8.2 Ellipses

ellipse: a set of all points in a plane whose distances from two fixed points(foci) in the plane have a constant sum.

foci - focus plural (always on major axis)
focal axis - line through the foci
center - midpoint of the foci (intersection of major \& minor axes)
vertices - points where ellipse intersects the major axis major axis - chord through the foci (longer)
minor axis - chord through the center perpendicular to the major axis (shorter)
pythagorean relationship: $a^{2}=b^{2}+c^{2}$

Ellipse - Standard form horizontal		
Standard Eq	$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$	
Center	(h, k)	
Foci	$(h \pm c, k)$	
Vertices	$(h \pm a, k)$	
Focal		
axis	$\mathrm{y}=\mathrm{k}$	
Pythagorean Relationship	$\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$	

Ellipse - Standard formvertical		\#84back
Standard Eq	$\frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1$	
Center	(h, k)	
Foci	$(h, k \pm c)$	(hx-c)
Vertices	$(h, k \pm a)$	\bigcirc
Focal axis	$\mathrm{x}=\mathrm{h}$	
Pythagorean Relationship	$\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$	

$$
\begin{aligned}
& \begin{array}{l}
\text { Find the varices and loci of } \frac{4 x^{2}+9 y^{2}}{36}=\frac{36}{36} \\
\text { v: } h\left(\begin{array}{l}
\text { fa, } k)
\end{array}\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { F: (h } \pm c, k) \\
C(0,0)
\end{array} \quad \frac{4 x^{2}}{36}+\frac{9 y^{2}}{36}=1 \\
& \text { V: }(0 \pm 3,0) \quad \frac{x^{2}}{9}+\frac{y^{2}}{4}=\frac{1}{a^{2}} \\
& F:(0 \pm \sqrt{5}, 0) \quad a^{2}=9 \\
& (\pm \sqrt{5}, 0) \quad a= \pm 3 \\
& \begin{array}{l}
a^{2}=b^{2}+c^{2} \\
a=4+c^{2}
\end{array} \text {, } 5=c^{2} \\
& \begin{array}{l}
a=4+c^{2} \\
c= \pm \sqrt{5}
\end{array} \\
& c= \pm \sqrt{5}
\end{aligned}
$$

Find the vertices
$a: \pm 4$
$v=(\pm 4,0)$

Find the center, vertices, and foci. Sketch a graph.

$$
\begin{aligned}
& a^{2}=25 \Rightarrow a=+5 \\
& \frac{(x-2)^{2}}{25}+\frac{(y+1)^{2}}{16}=1 \\
& C:(25,-1) \\
& \mathrm{V}:(2 \pm 5,-1) \\
& F:(2+,-1)(-3,-1) \\
& \begin{array}{l}
(5,-1)(-1,-1) \\
\operatorname{minor} a x i s: 2 b \\
16=b^{2} \\
b=4
\end{array}
\end{aligned}
$$

Find the center, vertices, and foci. Sketch a graph. $a^{2}=9 a= \pm 3 \quad 9=4+c^{2} \Rightarrow c^{2}=5-7 c= \pm \sqrt{5}$ $\frac{9(x-2)^{2}+4(y+3)^{2}}{\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{9}=1}$
$(2,-3)$
$V:(2,-3 \pm 3)$
$(2,0)(2,-6)$
$F:(2,-3 \pm \sqrt{5})$
$2 b=4$
$b^{2}=4$
$b= \pm 2$

Write the equation of the ellipse:
Major axis endpts: $(\pm 5,0) \quad 10=2 a \quad C:(0,0)$ minor axis length $4=2 b \quad a=5$

$$
\begin{aligned}
& \frac{(x-h)^{2} b=2}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \\
& \frac{x^{2}}{25}+\frac{y^{2}}{4}=1
\end{aligned}
$$

$$
A x^{2}+C y^{2}+D x+E y+F=0
$$

Steps:

1. move variables to left \& constants to right side of eq. to complete the square
2. Group like variables
3. If $x^{2} \& x$ terms, complete sq. for x 's
4. If $y^{2} \& y$ terms, complete sq. for y 's
5. Write each sq. in factored form.
6. Need to have 1 on rt. so divide both sides by value on rt.
7. Simplify
8. result is in graphing form

Write the equation of the ellipse in standard form:

$$
\begin{aligned}
& 9 x^{2}+16 y^{2}+54 x-32 y-47=0 \\
& +47+47 \\
& 9 x^{2}+54 x+16 y^{2}-32 y=47 \\
& \left.9\left(x^{2}+6 x+9\right)+16\left(y^{2}-2 y+1\right)=47+9(9)+161\right) \\
& 9(x+3)^{2}+16(y-1)^{2}=\frac{144}{144} \\
& \frac{(x+3)^{2}}{16}+\frac{(y-1)^{2}}{9}=1
\end{aligned}
$$

