8.1 Conic Sections and Parabolas

ellipse

circle - the plane has to be parallel to the base of the cone

#80

Parabola: set of all points in a plane equidistant from a particular line (directrix) and a particular point (focus)

axis of symmetry is \perp to the directrix

Latus rectum = focal width - the segment thru the focus \bot to the axis of symmetry. Its endpts lie on the parabola & length = |4p| (parallel to the directrix)

Axis of Symmetry - line \perp to the latus rectum & directrix. It intersects the parabola at the vertex.

measure from the focus to an endpt of the latus rectum = measure from the focus to the directrix.

Parabola - standard form

#81

up/down

$$4p(y-k) = (x-h)^2$$

vertical axis of symmetry

vertex (h, k)

focus (h, k+p)

directrix y = k - p

axis x = h

focal length p

focal width |4p|

left/right

$$4p(x-h) = (y-k)^2$$

horizontal axis of symmetry

vertex (h, k)

focus (h + p, k)

directrix x = h - p

axis y = k

focal length p

focal width |4p|

(not a function)

Graph: $2(x-2) = (y-3)^2$

vertex

focus

directrix

axis

focal length

focal width

Example:

Write the equation for a parabola with V: (2, -1) and a focal width of 4, opening down.

Write the equation for a parabola with V: (4, 3) and directrix x = 6

Parabola - General Form

$$Ax^{2} + Dx + Ey + F = 0$$
$$Cy^{2} + Dx + Ey + F = 0$$

Steps:

- 1. move the variable w/o a square term to the left & everything else to the rt.
- 2. Complete the sq. w/ the variables that have a sq. & linear term.
- 3. Write the completed square in factored form
- 4. Simplify

Prove the graph	of the	equation	is a	parabola,	find t	he ve	ertex,	focus
and directrix								

$$y^2 - 3x + 6y + 12 = 0$$

Prove the graph of the equation is a parabola, find the vertex, focus and directrix

$$3x^2 - 6x - 6y + 10 = 0$$