 ellipse
circle - the plane has to be parallel to the base of the cone

hyperbola

Degenerate forms

Point
 Line
 Intersecting Lines

Parabola : set of all points in a plane equidistant \#80 from a particular line (directrix) and a particular point (focus)
the parts of a parabola
focal length

axis of symmetry is \perp to the directrix

Latus rectum = focal width - the segment thru the focus \perp to the axis of symmetry. Its endpts lie on the parabola \& length $=|4 p| \quad$ (parallel to the directrix)

Axis of Symmetry - line \perp to the latus rectum \& directrix. It intersects the parabola at the vertex.
measure from the focus to an endpt of the latus rectum = measure from the focus to the directrix.

vertex
(h, k)
focus
($\mathrm{h}+\mathrm{p}, \mathrm{k}$)
directrix

$$
\mathrm{x}=\mathrm{h}-\mathrm{p}
$$

axis
$y=k$
focal length p
focal width $\quad|4 p|$
(not a function)

Graph: $2(x-2)=(y-3)^{2}$
vertex
focus
directrix
axis
focal length
focal width

Example:

Write the equation for a parabola with $\mathrm{V}:(2,-1)$ and a focal width of 4 , opening down.

Write the equation for a parabola with $V:(4,3)$ and directrix $x=6$

$$
\begin{aligned}
& \text { Parabola - General Form } \\
& \qquad \begin{array}{l}
A x^{2}+D x+E y+F=0 \\
C y^{2}+D x+E y+F=0
\end{array}
\end{aligned}
$$

Steps:

1. move the variable w/o a square term to the left \& everything else to the rt.
2. Complete the sq. w/ the variables that have a sq. \& linear term.
3. Write the completed square in factored form
4. Simplify

Prove the graph of the equation is a parabola, find the vertex, focus and directrix

$$
y^{2}-3 x+6 y+12=0
$$

Prove the graph of the equation is a parabola, find the vertex, focus and directrix

$$
3 x^{2}-6 x-6 y+10=0
$$

