8.1 Conic Sections and Parabolas

ellipse- intersectasat angle
circle - the plane has to be parallel to the base of the cone

hyperbola

Degenerate forms

Point
 Line

Intersecting Lines

Parabola : set of all points in a plane equidistant \#80 from a particular line (directrix) and a particular point (focus)
the parts of a parabola

axis of symmetry is \perp to the directrix

Latus rectum = focal width - the segment thru the focus \perp to the axis of symmetry. Its endpts lie on the parabola \& length $=|4 p| \quad$ (parallel to the directrix)

Axis of Symmetry - line ـ to the latus rectum \& directrix. It intersects the parabola at the vertex.
measure from the focus to an endpt of the latus rectum = measure from the focus to the directrix.

left/right
 $4 p(x-h)=(y-k)^{2}$

horizontal axis of symmetry
vertex
(h, k)
focus
(h+p,k)
directrix
$\mathrm{x}=\mathrm{h}-\mathrm{p}$
axis
$\mathrm{y}=\mathrm{k}$
focal length p
focal width $\quad|4 p|$
(not a function)

Graph: $2(x-2)=(y-3)^{2}$
$\frac{2}{4}=\frac{4 p}{4} \quad p=\frac{1}{2}$
$\frac{\square}{4} \frac{1}{4}(2,3)$
focus $(5 / 2,3)$
directrix $x=3 / 2$ axis $y=3$
focal length $1 / 2$
focal width 2

Graph: Vertex, focus, Directrix
2tiralwith endpoints

Example:
Write the equation for a parabola with $\mathrm{V}:(2,-1)$ and a focal width of 4. opening down.

$p= \pm 1$

Write the equation for a parabola with $\mathrm{V}:(4,3)$ and directrix $\mathrm{x}=6$

$$
\begin{aligned}
& 4 p(x-h)=(y-k)^{2} \\
& 4 p(x-4)=(y-3)^{2} \\
& \lambda^{\prime}=h-p \\
& 6=4-p \\
&-4-8(x-4)=(y-3)^{2} \\
& p=2
\end{aligned}
$$

Parabola - General Form

$$
\begin{aligned}
& A x^{2}+D x+E y+F=0 \\
& C y^{2}+D x+E y+F=0
\end{aligned}
$$

Steps:

1. move the variable w/o a square term to the left \& everything else to the rt.
2. Complete the sq. w/ the variables that have a sq. \& linear term.
3. Write the completed square in factored form
4. Simplify

Prove the graph of the equation is a parabola, find the vertex, focus and directrix

$$
\begin{aligned}
& y^{2}-3 x+6 y+12=0 \\
& +3 x-12 \\
& y^{2}+6 y=3 x-12
\end{aligned}
$$

(b) completes square
$\left(\frac{b}{2}\right)=3$

$$
\begin{aligned}
& \left(\frac{b}{2}\right)^{2} y^{2}+6 y+9=3 x-12+9 \\
& \left.\left(\frac{6}{2}\right)=3=3\right)^{2}=3 x-3-\frac{3 p}{4} \\
& (y+3)^{2}=3(x-1) \quad p=\frac{3}{4} \\
& (y:(1,-3) \\
& F:\left(\frac{7}{4},-3\right) \\
& d: x=1 / 4
\end{aligned}
$$

Prove the graph of the equation is a parabola, find the vertex, focus and directrix

$$
\begin{aligned}
& 3 x^{2}-6 x-6 y+10=0 \\
& +6 y-10 \\
& 3 x^{2}-6 x=6 y-10 \\
& 3\left(x^{2}-2 x+1\right)=6 y-10+3 \\
& \frac{-2}{2}=-1(x-1)^{2}=6 y-7 \\
& \frac{3(x-1)^{2}}{3}=\frac{6(y-7 / 6)}{3} \quad 4 p=2 \\
& (x-1)^{2}=2(y-7 / 6) \\
& v=1 / 2 \\
& v:(1,7 / 6) F:(1,5 / 3) d: y=2 / 3
\end{aligned}
$$

