8-1 Vertex Form

A quadratic equation, when graphed forms a parabola. Every parabola has a vertex and an axis of symmetry.

Identify the vertex and axis of symmetry:

$$
V:(0,0) \quad A: X=0
$$

Make a hypothesis of where the axis of symmetry will always be:

I can see the vertex of a quadratic when the quadratic is in graphing, or vertex form: $f(x)=a(x-h)^{2}+k$

The vertex is the point

Remember X'S ALWAYS \qquad

The axis of symmetry will always be the line \qquad
\qquad

To change a quadratic from standard form to vertex form we must complete the square. This then allows us to see the vertex.

Change the following quadratic into vertex form and identify the vertex and axis of symmetry
$f(x)=x^{2}+6 x-1$

$$
10=(x+3)^{2}
$$

$$
\begin{aligned}
& -10 \\
& f(x)=(x+3)^{2}-10
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{2}+6 x-1 \\
& f(x)=x^{2}+6 x+9-1-9 \\
& f(x)=(x+3)^{2}-10 \\
& v:(-3,-10) \\
&: x=-3
\end{aligned}
$$

$$
\begin{aligned}
& V:(-3-10) \\
& A: x=-2
\end{aligned}
$$

Change the following into vertex form and identify the vertex and axis of symmetry:

$$
\frac{4}{2}=2^{2}=4
$$

$$
\begin{aligned}
& f(x)=x^{2}+4 x+3 \quad \quad \frac{9}{2}=2=4 \\
& f(x)=x^{2}+4 x+4+3-4 \\
& f(x)=(x+2)^{2}-1 \quad \text { V:(-2,-1) A: } x=-2
\end{aligned}
$$

Change the following into vertex form and identify the vertex and axis of symmetry:

$$
f(x)=2 x^{2}-4 x+2
$$

$$
\frac{-2}{2}=(-1)^{2}=1
$$

$$
f(x)=2 x^{2}-4 x+
$$

$$
+2-
$$

\qquad

$$
f(x)=2\left(x^{2}-(2 x+1)+2-2\right.
$$

$$
f(x)=2(x-1)^{2}
$$

Change the following into vertex form and identify the vertex and axis of symmetry:

$$
\begin{aligned}
& f(x)=7 x^{2}-14 x-56 \quad \frac{-2}{2}-(-1)^{2}=1 \\
& f(x)=7 x^{2}-14 x+-56- \\
& f(x)=7\left(x^{2}(-2) x+1\right)-56-1 \\
& f(x)=7(x-1)^{2}-63 \quad \text { V: }(1,-63) \text { A } x=1
\end{aligned}
$$

Change the following into vertex form and identify the vertex and axis of symmetry:

$$
\begin{aligned}
& \text { is of symmetry: } \\
& \begin{array}{l}
f(x)=-2 x^{2}+4 x+1 \quad \frac{-2}{2}=1 \\
f(x)=-2 x^{2}+4 x++1- \\
f(x)=-2(x-2 x+1)+1+2 \\
f(x)=-2(x-1)^{2}+3, \quad A=x=1 \\
v:(1,3)
\end{array}
\end{aligned}
$$

Change the following into vertex form and identify the vertex and axis of symmetry:

$$
\begin{aligned}
& \text { is of symmetry: } \\
& f(x)=6 x^{2}+24 x-18 \quad \frac{4}{2} 2 \\
& f(x)=6 x^{2}+24 x+-18- \\
& f(x)=6\left(x^{2}+4 x+4\right)-18-24 \\
& f(x)=6(x+2)^{2}-42 \\
& V:(-2,-42) \\
& A x-2
\end{aligned}
$$

