Inequalities

- basic inequalities: solve like an equation using ,,+- *, and /
- if you divide or multiply by a negative number --- the inequality sign flips
- check answer using a value in the solution set
- graphing: \bigcirc open holes with $<,>, \neq$
closed holes with $\leq, \geq,=$
Example: solve \& graph $-y \geq \frac{y+6}{7}$

Solve the system of inequalities: | $\frac{y \geq 2 x+3}{1}$ |
| :--- |
| $y<-\frac{1}{2} x-1$ |

Steps:

1. get each inequality in a form to graph (y -intercept form remember if multi or divide by (-) switch sign)
2. graph each inequality $<,>$ dotted line

$$
\leq, \geq \text { solid line }
$$

3. shade the region defined by each inequality
4. darken the overlapping region (if there isn't one then no solution exists, \varnothing)

Solve the system of inequalities:
$5 x+2 y \leq 20 \leq-\frac{9}{2} x+10$
$2 x+3 y \leq 18$
$x+y \geq 2 \leq-\frac{2}{3} x+6$
$x \geq 0 \quad y \geq-x+2$
$y \geq 0$

Find the max and min of the objective function:

$$
f(x, y)=2 x-y
$$

1. Find the vertices of the feasible region: (you find these by solving the system using the 2 lines that intersect)
2. Place them in the table.

3. Evaluate using the objective equation
4. The max and min are the largest and smallest number after evaluating

(x, y)	$\mathrm{F}(\mathrm{x}, \mathrm{y})=2 \mathrm{x}-\mathrm{y}$	$\mathrm{F}(\mathrm{x}, \mathrm{y})$	
$(0,0)$	$2(0)-(0)$	$=$	0
$(0,7)$	$2(0)-(7)$	$=$	-7
$(8,0)$			

MAX:
MIN : \qquad

Linear Programming

process used to find max or min value of a linear function subject to given conditions called constraints
Steps:
1.Graph the constraints - these are all of the inequalities that create a region of feasibility
2. Find the feasible region - this is the shaded region
3. Find the vertices of the region - these are the corners of the region
4. substitute each vertex (x, y) into the linear function (objective equation) and evaluate

5. Determine the max \& min values \& where those values occur
Some regions of feasibility are not bounded. If this
happens you are not always able to evaluate a max or min value.

Gonza manufacturing has two factories that produces three grades of paper: low, medium and high grade. It needs to supply 24 tons of low grade, 6 tons of medium and 30 tons of high grade paper. Factory A produces 8 tons of low grade, 1 ton of medium grade, 2 tons-of high-grade daily and costs $\$ 2000$ per day to operate. Factory B produces 2 tons of low grade, 1 ton of medium grade and 8 tons of high grade paper dally and takes $\$ 4000$ per day to operate. How many days should each factory operate to fill the orders st minimum ostis $x=7$ or 4 ay $5 F$. A $2000 x+4000 y$
objective
tunction

(x, y)	2000x + 4000y	$f(x, y)$
0,12	$2004(0)+4000(2)$	48,000
2,4	$2000(2)+40014$	20,000
3,3	2000 (3) 140003	18000

1s,0 open 3 days each

