

Find the max and min of the objective function:

$$f(x,y)=2x-y$$

1. Find the vertices of the feasible region: (you find these by solving the system using the 2 lines that intersect)

- 2. Place them in the table.
- 3. Evaluate using the objective equation

4. The max and min are the largest and smallest number after evaluating

(x,y)	F(x,y)=2x-y		F(x,y)	
(0,0)	2(0)-(0)	=	0	
(0,7)	2(0)-(7)	=	-7	
(8,0)				MAX:
				MINE
				111114.
				I

Linear Programming	#65			
process used to find max or min value of a linear function subject to given conditions called constraints				
Steps: 1.Graph the constraints - these are all of the inequalitie create a region of feasibility	es that			
2. Find the feasible region - this is the shaded region				
Find the vertices of the region - these are the corners of the region				
4. substitute each vertex (x,y) into the linear function (objective equation) and evaluate	,			
Determine the max & min values & where those values occur				
Some regions of feasibility are not bounded. If this happens you are not always able to evaluate a max or r value.	min			

Gonza manufacturing has two factories that produces three grades of paper: low, medium and high grade. It needs to supply 24 tons of low grade, 6 tons of medium and 30 tons of high grade paper. Factory A produces 8 tons of low grade, 1 ton of medium grade, 2 tons of high grade daily and costs \$2000 per day to operate. Factory B produces it tons of low grade, 1 ton of medium grade and 8 tons of high 0 grade paper daily and takes \$4000 per day to operate. How many days should each factory operate to fill the orders at minimum cost? t days n (**%**) (x,y)2000x + 4000yf(x,y)CO