Review of Inverses

A matrix has an inverse if:

- It is Square
- The $\operatorname{det}(A) \neq 0$

If the $\operatorname{det}(A)=0$ then the matrix is $\operatorname{SINGULAR}$

The determinant of a 2×2 matrix is $\operatorname{ad-bc}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Inverse of a 2×2 Matrix

Inverse of a 3×3 Matrix

Plug into your calculator

$$
\left(\begin{array}{ccc}
3 & -3 & 6 \\
1 & -3 & 10 \\
-1 & 3 & -5
\end{array}\right)
$$

Matrices with Inverses

Solving with inverses:

$$
\begin{aligned}
& x-3 y+z=4 \\
& -y-4 z=7 \\
& 5 x-13 y+13 z=8
\end{aligned}
$$

$$
\left(\begin{array}{|cc|}
\left(\begin{array}{ccc}
1 & -3 & 1 \\
0 & -1 & -4 \\
5 & -13 & 13
\end{array}\right)
\end{array}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)\right.
$$

you have to have the same number of variables as equations to use this method
possible answers:
2×2 Matricies: BY HAND

$$
\begin{array}{ll}
\left.\begin{array}{ll}
3 x-2 y=0 \\
-x+y=5 & {\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
5
\end{array}\right]} \\
\frac{1}{3-2}\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] \quad \begin{array}{l}
V=C^{-1} A \\
c^{-1}=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] \\
\\
\\
{\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
5 \\
\hline
\end{array}\right]=\left[\begin{array}{l}
10 \\
15
\end{array}\right]} \\
(10,15)
\end{array}
\end{array} \begin{array}{l}
15
\end{array}\right]
\end{array}
$$

Solve using inverse matrices:
$2 x-y+z=-6$
$x+2 y-3 z=9$
$3 x-2 y+z=-3$
$\left[\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & -2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-6 \\ 9 \\ -3\end{array}\right]$

