7.2 Matrices

matrix - a rectangular array of variables and/or constants in horizontal rows and vertical columns enclosed by brackets
 subscript to refer to its position
always named w/ capital letter

$$
A_{3 \times 3}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad b_{47}
$$

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \quad\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

zero matrix - all elements are 0
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
equal matrices - same dimensions and corresponding elements are equal

Find the order of the Matricies

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 7 \\
4 & 3 \\
8 & -7
\end{array}\right) \\
3 \times 2
\end{gathered}
$$

scalar: real number

scalar multiplication:

$$
k\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right]
$$

Addition and Subtraction:

\#60
you can only add and subtract matrices of the same size, if they are of the same size you simply add elements in the same position with another element in the same position

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \pm\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a \pm e & b \pm f \\
c \pm g & d \pm h
\end{array}\right]
$$

$\left(\begin{array}{l}2) \\ (5) \\ (4) \\ -6\end{array}\right)+\left(\begin{array}{cc}3 & (-5 \\ (-2) & 7\end{array}\right)=\left[\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right]$
$\left(\begin{array}{ll}5 & 4 \\ -3 & (6) \\ (0) & (2)\end{array}\right)-\left(\begin{array}{ll}3 & -5 \\ -2 & 7 \\ -3 & (4)\end{array}\right]=\left[\begin{array}{cc}2 & 9 \\ -1 & -1 \\ 3 & -2\end{array}\right]$ the number of rows of the second
not communative $A B \neq B A$ the result will be the size of the rows of the first by columns of the second

$$
3 \times 23 \times 2
$$

$$
\begin{gathered}
7 \times 4 \cdot 4 \times 3 \\
3 \times 4 \cdot 7 \times 4
\end{gathered}
$$

these 2 matrices can't be multiplied

Does the product of AB exist, if yes, what is the size of the product?
$A B: 2 \times 3.3 \times 2$
$A=\left(\begin{array}{lll}1 & -2 & 3 \\ 2 & -3 & 4\end{array}\right) 2 \times 3$ 2×2 $B A: 3 \times 2.2 \times 3 \checkmark$

$$
B=\left(\begin{array}{ll}
0 & 2 \\
-1 & 5 \\
-2 & 3
\end{array}\right) \quad 3 \times 2
$$

Does the product of BA exist, if yes, what is the size of the product?
\#61-
back

Matrix multiplication: is the product of each element in the row of the first with each element in the column of the second

Calculator:

$$
\left(\begin{array}{lll}
1 & 3 & -1 \\
4 & 2 & 7 \\
-2 & 0 & 5
\end{array}\right) \cdot\left(\begin{array}{lll}
10 & -3 & 1 \\
4 & 3 & 5 \\
2 & 0 & -2
\end{array}\right)
$$

Application Problems:sometimes when working an application problem, you need totranspose the matrix
transpose - switch the rows and columns

$$
A=\left(\begin{array}{lll}
1 & 4 & -2 \\
3 & 2 & 0 \\
-1 & 7 & 5
\end{array}\right)
$$

$$
A^{T}=\left(\begin{array}{lll}
1 & 3 & -1 \\
4 & 2 & 7 \\
-2 & 0 & 5
\end{array}\right)
$$

Identity Matrix: (I) is a square matrix with elements of 1 on the main diagonal and all other elements are 0 .

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \begin{aligned}
& A I=A \\
& 3\left(\frac{1}{3}\right)=1
\end{aligned}
$$

Inverse Matrix: a square matrix such that $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$, then B is the inverse of A .

$$
B=A^{-1}
$$

if a matrix does not have an inverse - it is asingular matrix

Verify that the matrices are inverses:

$$
A=\left(\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right)
$$

Inverse of a 2×2 matrix

ad-bc is the determinant of a 2×2 matrix
determinants $\neq 0$ then the matrix has an inverse (nonsingular)

March 16, 2012

Find the inverse of:

