7.1 Solving Systems of Two Equations

$$
\begin{aligned}
& 2 x-y=10 \\
& 3 x+2 y=1
\end{aligned}
$$

A Solution is an ordered pair (x, y) that makes both equations true.

The two main methods for solving systems are substitution and elimination.

Solving by substitution:
Solving by substitution means we solve for one variable in one equation and then substitute that expression into the second equation to solve for the remaining variable.

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 x-0 y=10 \\
3 x+2 y=1 \\
3 x+2(2 x-10)=1 \\
3 x+4 x-20=1 \\
7 x=21
\end{array}, \begin{array}{l}
y=2(3)-10 \\
y=6-10 \\
y=-4 \\
(3,-3)
\end{array}, \quad(3)\right.}
\end{aligned}
$$

Find the dimensions of a rectangular garden that has perimeter 100 ft and area of 300 ft .

Solving by Elimination
Solving by elimination means using basic operations we eliminate one of the variables when adding the equations together, then solve for the remaining variable.

Solve:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x-3 y=-2
\end{array}\right] \quad x }=3 y-2 \\
& 2 x-6 y=4 \\
& 2(3 y-2)-6 y=4 \\
& 6 y-4-y y=4 \\
&-4=4 \\
& \text { nOSOlution }
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& 3(4 x-5 y=2) \\
& -12 x+15 y=-6 \\
& +\quad 12 x-15 y=6 \\
& \hline 0+0=0 \\
& 0=0 \\
& \text { Intinite }
\end{aligned}
$$

Possible Solutions:

One/two/three Solution(s): A unique ordered pair (x, y) that satisfies both equations. Number of solutions depends on the degree: Linear- one, Quadratic - two, cubic - three

No Solution: There is no ordered pair (x, y) that will make both equations true.

Infinitely many solutions: There are infinite ordered pairs (x, y) that make both equations true.

