7-4 Solving Quadratic equations by completing the square Day 2
Remember: $\quad a^{2}+2 a b+b^{2}=(a+b)^{2}$

Today the difference is that we will have a LEADING COEFFICIENT on our squared term that is not \qquad .

When there is a Leading coefficient (not 1) we must:
1 - Move the constant to the other side
2 - Factor out the leading coefficient

~~~~
3 -Complete the square.
DUNT FORGET TO ACCOUNT FOR THE GCF ON THE OUTSIDE

Solve by completing the square.
\[
\left.\begin{array}{cc}
x^{2}+6 x+1=0 & \frac{6}{2}=3^{2}=9 \\
-1-1
\end{array}\right)
\]
You Try
\[
\begin{aligned}
& 2 x^{2}-8 x=16 \\
& 2\left(x^{2}-4 x+4\right)=16+8
\end{aligned}
\]
\[
\frac{-4}{2}=(-2)^{2}=4
\]
\[
\begin{gathered}
\frac{2(x-2)^{2}}{2}=\frac{2}{2} \\
\sqrt{(x-2)^{2}}=\sqrt{12}
\end{gathered}
\]
\[
\begin{aligned}
& x-2= \pm 2 \sqrt{3} \\
& +2+2
\end{aligned}
\]
\[
\begin{aligned}
& +2+2 \\
& x=2 \pm 2 \sqrt{3}
\end{aligned}
\]

Solve by completing the square.
\[
\begin{aligned}
& 3 x^{2}-9 x=28 \\
& \left.3\left(x^{2}-3 x+\frac{9}{4}\right) \frac{4}{2} \frac{-3}{2}\right)^{2}=\frac{9}{4}+\frac{27}{4} \\
& 3\left(x-\frac{3}{2}\right)^{2}=\frac{112}{4}+\frac{27}{4}=\frac{139}{4} \pi \\
& \left.\frac{3\left(x-\frac{3}{2}\right)^{2}}{3}\right)^{\frac{139}{12}}=\frac{139}{4} \\
& \frac{x-\frac{3}{2}}{3}= \pm \sqrt{\frac{139}{12}} \\
& +\frac{+3}{2}+\frac{3}{2} \pm \sqrt{\frac{139}{12}}
\end{aligned}
\]

Solve by completing the square.
\[
\begin{aligned}
2 x^{2}+4 x+3 & =0 \\
-3 & -3 \\
2 x^{2}+4 x & =-3
\end{aligned}
\]
\[
\text { (2) }\left(x^{2}+2 x+1\right)=-3+2
\]
\[
2(x+1)^{2}=-1 \text { no real solution }
\]

\[
\begin{array}{ll}
2 c^{2}+6 c-1=0 & (2 \times 2 \\
2\left({ }^{2}+8 c=1\right. & \sqrt{(c+2)^{2}} \sqrt{\frac{9}{2}} \\
2\left(c^{2}+\frac{4 c}{2}+4\right)=1+8 & \left(+2= \pm \sqrt{\frac{9}{2}}\right. \\
\frac{2(c+2)^{2}}{2}=\frac{9}{2} & \frac{-2-2}{}
\end{array}
\]
\[
\begin{aligned}
& 4 x^{2}+16 x-40=0 \\
& +40 \\
& 4 x^{2}+16 x=40 \\
& 4\left(x^{2}+\frac{4 x}{2}+4\right)=40+16 \\
& \frac{4(x+2)}{4}=\frac{56}{4} \\
& (x+7)^{2}=14
\end{aligned} \quad x=-2 \pm \sqrt{14} .
\]
\[
\begin{aligned}
& 5 v^{2}-10 v-21=0 \\
& 5 v^{2}-10 v=21 \\
& 5\left(v^{2}-2 v+-\right)=21
\end{aligned}
\]
~~~~

