7-3 Solving Quadratic equations by completing the square Day 1
Remember:

$$
\frac{\left(a^{2}+2 a b+b^{2}\right.}{2 b}=(a+b)^{2}
$$

determine the constant that must be added to the expression to make it a perfect square trinomial. Then factor the expression.

$$
p^{2}+14 p+49=(p+7)^{2}
$$

$$
\begin{aligned}
& \text { You Try } \\
& w^{2}+12 w+36=(w+6)^{2} \frac{D}{2}=6^{2}=36 \\
& w^{2}+8 w+16=(w+4)^{2} \frac{8}{2}=4^{2}=16
\end{aligned}
$$

Step 1: group x terms together and move the constant to the other side of the equation (factor out the coefficient of x^{2}
if there is one)

$$
\begin{aligned}
& \text { fficient of } x^{2} \\
& x^{2}+4 x+4=5+4
\end{aligned}
$$

Step 2: leave a blank $\quad \frac{4}{2}=2^{2}=4$
behind the group of x's and 2
on the other side of the
equation
Step 3: to form a perfect

$$
(x+2)^{2}=5+4
$$ square, create the () for the squared group

$\frac{x^{2}+4 x-5=0}{+5+5}$ 2 squared group

$$
x^{2}+\underset{\frac{4}{2}}{4} x+\underline{4}=5+
$$

$$
\text { Step 4: find } \frac{b}{2} \quad(x+\underline{2})^{2}=5+\underline{4}
$$ and plug it in the () blank

Step 5: square the number from step 4 and place in in the blank with x's (if you have a coefficient multiply this number by the coefficient and fill in remaining blanks)

Step 6: simplify and solve $(x+2)^{2}=5+4$

$$
\begin{gathered}
\frac{(x+2)^{2}=9}{\sqrt{(x+2)^{2}}=\sqrt{9}} \\
x+2= \pm 3 \\
x=-2 \pm 3 \\
x=1,-5
\end{gathered}
$$

Solve by completing the square.

$$
\begin{array}{rlr}
x^{2}+6 x+1=0 & \frac{6}{2}=3^{2}=9 \\
-1 & -1 & \\
x^{2}+6 x+9 & =-1+9 & \\
\sqrt{(x+3)^{2}}=\sqrt{8} & x+3= \pm 2 \sqrt{2} \\
x+3=\frac{ \pm \sqrt{8}}{} & \begin{array}{l}
-3-3 \\
4
\end{array} & x=-3 \pm 2 \sqrt{2} \\
&
\end{array}
$$

$$
\begin{aligned}
& \text { Solve by completing the square. } \\
& \qquad \begin{array}{cc}
x^{2}-8 x+9=0 \\
-9-9 & -8 \\
x^{2}-8 x+16 & =-9+16 \\
\sqrt{(x-4)^{2}}=\sqrt{7} & (x-3)^{2}=-16 \\
x-4++\sqrt{7} & \text { no real solv } \\
x=4 \pm \sqrt{7} &
\end{array}
\end{aligned}
$$

\square

