7-1

Solving by Factoring

Objective: I can solve quadratic equations by factoring and using the zero-product property.

I can write a quadratic equation given the zeros or x-intercepts

What does it mean to "solve" an equation?
Finding a value that makes
the equation true

Solve by factoring	\downarrow
$x^{2}-20 x+100=0$	$2 \cdot-3=-6$
$(x-10)(x-10)=0$	$2 x^{2}-5 x=3$
$x=10$	$-3-3$

Solve by factoring

$x^{2}+10 x+15=-6$	$x^{2}-5 x+4=4$
$+6+6$	$-4-4$
$x^{2}+10 x+21=0$	$x^{2}-5 x=0$
73	$x(x-5)=0$
$(x+7)(x+3)=0$	$x=0,5$
$\left(\begin{array}{ll}x=-7,-3 & \\ x+7=0 & x+3=0 \\ -7-7 & -3-3 \\ x=-7 & x=3\end{array}\right.$	

TASK: Solve $x^{2}+6 x+5=0$ by factoring
$-5,-1$ Solutions
Whin that Whin \# that
makes
Graph $f(x)=\underline{x^{2}+6 x+5}$ Graph $f(x)=(x+1)(x+5)$
What do you notice about the solutions nd the graphs?

$$
\begin{array}{ll}
0=x^{2}+6 x+5 & \cos ^{5} f(x)=x^{2}+6 x+5 \\
\text { Solutions: } x=5,-1 & \text { Zeros }=5,-1
\end{array}
$$

TASK: Solve $x^{2}-x+12=0$ by factoring

Graph $f(x)=x^{2}-x+12$
Graph $f(x)=(x+3)(x-4)$

What do you notice about the solution and the graphs?

When we solve a quadratic equation, this is called finding the zero's, where the graph crosses the x -axis.

$$
\begin{aligned}
& \text { Find the zeros of the function by factoring and check with } \\
& \text { your calculator } \\
& y=2 \cdot-7=-14 \quad \text { (2x } 2(x)=5 x-3 x^{2}-3 x-1 . \\
& y=2 x^{2}-2 x+7 x-7 \\
& y=2 x(x-1)+7(x-1) \\
& y=(x-1)(2 x+7) \\
& \quad 1,-\frac{7}{2}
\end{aligned}
$$

Your Turn!

Find the zeros of the function by factoring and check with
your calculator $\quad 2 \cdot-20=-40$
$f(x)=\left(2 x^{2}+3 x-20 \quad\right.$ -
$f(x)=2 x^{2}+8 x-5 x-20$
$58 \quad y=(x-4)(x+4)$
$f(x)=2 x(x+4)-5(x+4)$
$x=4,-4$
$f(x)=(x+4)(2 x-5) \quad 2 x-5=0$

$$
\begin{gathered}
x=-4 x=2 / 6 \\
x=-5 / 2
\end{gathered}
$$

$$
\begin{array}{r}
2 x=5 \\
x=\frac{5}{2}
\end{array}
$$

Write a function with zeros of -1 and 3

Write a function with zeros of -2 and -6

$$
f(x)=(x+2)(x+6)
$$

Your turn: Write a function with zeros of -4 and 10

$$
f(x)=(x+4)(\because-10)
$$

Your turn: Write a function with zeros of 5 and -2

$$
f(x)=(x+2)(x-5)
$$

The product of 2 consecutive integers is 156 . Find the two integers.

$$
12,13 \quad \begin{aligned}
& x(x+1)=156 \\
& x(x+1)-156=0 \\
& x^{2}+x-156=0 \\
& (x-12)(x+13)=0 \\
& x(12)-13
\end{aligned}
$$

\square

