6.5 Graphs of Polar Equations

$$
r=5 \cos 2 \theta
$$

$r=3+3 \cos \theta$

$r=5$

Types of Symmetry

1. The x -axis (polar axis)

2. The origin (the pole)

Symmetry Test for Polar Equations *54

The graph of a polar equation has the indicated symmetry if when replaced you get an equivalent expression

Symmetry

Replace
By

1. The x-axis (polar axis) $\quad(r, \theta) \quad(r,-\theta) \operatorname{or}(-r, \pi-\theta)$
2. The y-axis
(r, θ)
$(-r,-\theta) \operatorname{or}(r, \pi-\theta)$
3. The origin (the pole)

$$
(r, \theta) \quad(-r, \theta) \operatorname{or}(r, \theta+\pi)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Find the Symmetry of } r=4 \sin 3 \theta \\
\sin (-\theta)=-\sin \theta
\end{array} \quad \begin{array}{l}
y \text {-axis } \\
(r, \theta)(-r,-\theta)
\end{array} \\
& -r=4 \sin (-3 \theta) \\
& -1(-r)=(-(4 \sin 3 \theta))-1
\end{aligned} \begin{aligned}
& \text { Y-axis } \sqrt{ } \text { Symmetry } r=4 \sin 3 \theta
\end{aligned}
$$

Rose Curves $\quad r=a \sin n \theta \quad r=a \cos n \theta$
Analyze means find:

1. \# of Petals
2. Length of Petals
3. Domain
4. Range
5. Symmetry

1. \# of Petals

$r=3 \cos 2 \theta$

$r=5 \sin 3 \theta$

\# of Petals:

2. Length of Petals

Trace our Petals in the calculator
What do you find about the max and mins?
$r=a \sin n \theta$

Length of Petals: $|a|$
3. Domain/ 4. Range

$$
r=a \sin (n \theta)
$$

What do you put into a polar equation? (Domain) angles allreal\#'s
What do you get out of a polar equation? (Range)
 r lengths

5. Symmetry

$$
r=3 \cos 2 \theta \quad r=3 \sin 3 \theta \quad r=3 \cos 5 \theta
$$

y-axis $\quad x$-axis
origin
What do you conclude about their symmetry?

Rose Curves
 \# 55
 $r=a \sin (n \theta) \quad r=a \cos (n \theta)$

\# of Petals: $\quad n$, if n is odd
$2 n$, if n is even

Length of Petals: $|a|$
Domain: All real Numbers
Range: [-|a|, |a|]
Symmetry: n even, Symmetric about x, y-axis, and origin n odd, $r=a \cos n \theta$ symmetric about x -axis n odd, $r=a \sin n \theta$ symmetric about y -axis

Limaçon Curves Limaçon pronounced: LEE-ma-sohn
 $r=a \pm b \sin \theta$
 $r=a \pm b \cos \theta$
 Analyzing means find:
 1. Type
 2. Domain
 3. Range
 4. Symmetry

1. Type
$r=2+3 \sin \theta$
Looped Limaçon $\frac{a}{b}<1$

$r=3-3 \sin \theta$
Cardiod $\frac{a}{b}=1$

Dimpled Limaçon

$$
r=4+\cos \theta
$$

Convex
Limaçon
$\frac{a}{b} \geq 2$

2/3 Domain and Range $r=a \pm b \sin \theta$

What do you put into a polar equation? (Domain)

What do you get out of a polar equation? (Range)

$$
r \text {-length }
$$

Domain: allreal\#'s
Range: $[a-b, a+b]$
4. Symmetry
$r=3-3 \sin \theta \quad r=2+3 \sin \theta \quad r=4+\cos \theta \quad r=3+2 \cos \theta$

What do you conclude about their symmetry?

Limaçon Curves

Domain: All real Numbers
Range: [abb, a+b]
Symmetry: $r=a \pm b \cos \theta$ symmetric about x-axis $r=a \pm b \sin \theta$ symmetric about y -axis

Type: $\frac{a}{b}<1$: looped Lima Con
$\frac{a}{b}=1:$ Cardiod
K $\frac{9}{b}$ L2: Dimpled Limacon
$\frac{a}{b} \geq 2$: convex Limaçon

1. Type
$r=2+3 \sin \theta$
Looped Limaçon

$r=3-3 \sin \theta$

Cardiod

$r=3+2 \cos \theta$

Dimpled Limaçon

$$
r=4+\cos \theta
$$

Convex
Limaçon

Archimedes Curve

$$
r=\theta
$$

