6.4 Polar Coordinates

Polar Coordinate System: points are described by distance and direction

Distance is measured from a fixed point called the pole.
Direction is relative to a fixed ray with endpoint at the pole - called the polar axis.

Pole
Polar Axis

Polar Points:

February 29, 2012

Each point can be expressed in infinitely many ways.

Using a negative radius, move backwards.

To express in general using radians: $(-3, \pi / 4+(2(0)+1) \pi)$

$$
\begin{gathered}
(r, \theta+2 n \pi) \\
(-r, \theta+(2 n+1) \pi)
\end{gathered}
$$

$$
\begin{aligned}
& (-3, \pi / 4+\pi) \\
& (-3,5 \pi / 4)
\end{aligned}
$$

Conve Polar

$$
(x, y) \rightarrow(r, \theta)
$$

Rectangular to Polar

$$
x^{2}+y^{2}=r^{2} \quad \text { solve for } \mathrm{r}
$$

Do we know any equations relating x, y, and r ??
Do we know any equations relating x and y that will help us find an angle??

$$
\tan \theta=\frac{y}{x}
$$

$$
x
$$

solve for θ, refer to the ordered pair to get the correct quadrant

Give the polar coordinates for:
$(0,1)$

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
& =0^{2}+1^{2} \\
r^{2} & =1 \\
r & = \pm 1
\end{aligned}
$$

$$
\tan \theta=y / x
$$

$\tan \forall=1 \%$ undefined

$$
(1, \pi / 2)(-1,3 \pi / 2)
$$

$(2,2)$

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
& =2^{2}+2^{2} \\
r^{2} & =8 \\
r & = \pm 2 \sqrt{2}
\end{aligned}
$$

$$
\begin{array}{rlr}
\tan \theta & =2 / x & (2 \sqrt{2}, \pi / 4) \\
& =2 / 2 & \left(-2 \sqrt{2}, \frac{5 \pi}{4}\right) \\
\tan \theta & =1 \\
\theta & =\frac{\pi}{4}, \frac{5 \pi}{4}
\end{array}
$$

Conversion: Polar to Rectangular \#52- back $(r, \theta) \rightarrow(x, y)$

this is the same idea as finding x and y components for initial velocity - just a different coordinate system

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Give the rectangular coordinates for:

$$
\begin{array}{rlrl}
\left(3, \frac{\pi}{2}\right) \quad \begin{aligned}
x & =r \cos \theta \\
& =3 \cos \frac{\pi}{2} \\
& =3(0)
\end{aligned} \quad \begin{aligned}
y & =r \sin \theta \\
x & =3 \sin \frac{\pi}{2} \\
& =3(1)
\end{aligned} \\
\left(2,60^{\circ}\right) & 2 \cos 60 & 2 \sin 60 \\
\left(0, \frac{\sqrt{3})}{2}\right)
\end{array}
$$

Conversions for Polar Equations
$r=$
to convert equations use:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned} \quad x^{2}+y^{2}=r^{2}
$$

$$
\frac{1}{\operatorname{ded} \sec \theta}=\cos \theta
$$

$$
\frac{r}{\sec \theta}=\frac{5 \sec \theta}{\sec \theta}
$$

$$
\begin{gathered}
\frac{r}{\sec \theta}=5 \\
r \cos \theta=5 \\
x=5
\end{gathered}
$$

$$
\begin{gathered}
3(x+4(y)=5 \quad x=r \cos \theta \quad y=r \sin \theta \\
3(r \cos \theta)+4(r \sin \theta)=5 \\
\frac{r(3 \cos \theta+4 \sin \theta)}{3 \cos \theta+4 \sin \theta} 5 / 3 \cos \theta+4 \sin \theta \\
r=5 / 3 \cos \theta+4 \sin \theta
\end{gathered}
$$

Graphing Polar in your calculator:

