6.3 Parametric Equations

equations that describe motion in terms of time because they have an additional variable (the parameter) - where an item is at a particular moment in time
there are 2 parts to a parametric equation - in terms of time
$\mathrm{x}(\mathrm{t})=\quad$ this is one set of equations
$\mathrm{y}(\mathrm{t})=$

Vocabulary:

$x(t)=f(t)$ and $y(t)=g(t)$ are functions defined on an interval of $t-$ values called a parametric curve
$x(t)$ and $y(t)$ are parametric equations
the variable \dagger is the parameter
the interval of t-values is called parameter interval
When we give parametric equations and a parameter interval for the curve we have parametrized the curve.

Complete the table:

$$
0 \leq t \leq 4
$$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=3 \mathrm{t} \\
& \mathrm{y}(\mathrm{t})=2 \mathrm{t}+4
\end{aligned}
$$

t	0	1	2	3	4
x	0	3	6	9	12
y	4	6	8	10	12

Graphing Parametric Equations

$$
x=t^{2}-2
$$

$$
y=3 t
$$

on the intervals:

Graphing Parametric Equations

$y=3 t$
On your calculator:
on the intervals:
$-3 \leq t \leq 1 \quad-2 \leq t \leq 3 \quad-3 \leq t \leq 3$

Projectile Motion
A distress flare is shot straight up from a ship's bridge 75 ft above the water with an initial velocity of $76 \mathrm{ft} / \mathrm{sec}$.

$$
\left(y(t) h(t)=-16 t^{2}+v_{0} t+h_{0}\right.
$$

a) Use an equation to model the height of the flare as a function of time.
b) Use parametric mode to simulate the drop during the first 5 seconds.
c) After 4 seconds someone sees the flare. How high was the flare when it was seen? 123 ft

$$
\begin{array}{ll}
\text { en it was seen? } 123 \mathrm{ft} & \quad y(t)=-16 t^{2}+76 t+75 \\
\left.x(t)=t \quad-164^{2}\right)+76(4)+75=123 \\
x_{2}(t)=5.5 & y_{2}(t)=-16 t^{2}+76 t+75
\end{array}
$$

But what about motion that is not straight up? But rather at an angle?

Taijuan Walker throws a baseball from a point y_{\circ} feet above ground level with an initial speed of $\mathrm{v}_{\mathrm{o}} \mathrm{ft} / \mathrm{sec}$ at an angle $\boldsymbol{\theta}$ with the horizontal. How do we represent the motion?

$$
h(t)=-16 t^{2}+v_{o} t+h_{0}
$$

$$
\text { pathway }\left\{\begin{array}{l}
x=\left(v_{0} \cos \theta\right) t \\
y=-16 t^{2}+\left(v_{0} \sin \theta\right) t+h_{0}
\end{array}\right.
$$

Kevin hits a baseball at 3 ft above ground with an initial speed of $150 \mathrm{ft} / \mathrm{sec}$. at an angle of 18°. Will the ball clear a 20 ft . fence that is 400 ft away? NO

$$
\begin{array}{cc}
x_{1}(t)=(150 \cos 180) t & y_{1}(t)=-16 t^{2}+(150 \sin 18) t+3 \\
t=3 & y_{2}(t)=20(t / 3)
\end{array}
$$

Motion

$$
h(t)=-16 t^{2}+v_{o} t+h_{0}
$$

Used when objects are released at a 90 degree angle- Straight up
$V_{0}=$ initial velocith
$h_{0}=$ initial height
pathway $\left\{\begin{array}{l}x=\left(v_{0} \cos \theta\right) t \\ y=-16 t^{2}+\left(v_{0} \sin \theta\right) t+h_{0}\end{array}\right.$

Used when objects are released at an angle θ with the horizontal

Parametric vs. Rectangular

Eliminate the parameter in the following equation:

$$
\begin{array}{ll}
\begin{array}{l}
x(t)=3 t \\
y(t)=2 t+4
\end{array} & x=3 t \quad t=\left(\frac{x}{3}\right) \\
y=2\left(\frac{x}{3}\right)+4 \\
y=\frac{2}{3} x+4
\end{array}
$$

Eliminate the parameter in the following equation:

$$
\begin{array}{lr}
x=t^{2}+3 & x=\left(\frac{y}{4}\right)^{2}+3 \\
y=4 t \quad t=\frac{y}{4} & x=-t^{2}+3 \\
y=4(\pm \sqrt{x-3}) & -3-3 \\
y=4 \sqrt{x-2} & \\
x-3=t^{2} \\
\sqrt[\pm]{x-3}=t
\end{array}
$$

