

Objectives:

I can factor the greatest common factor out of an expression. I can factor an expression by grouping.

Introduction to factoring

What does it mean to factor a number?

Prime Factorization

Give the prime factorization for:

Factoring is the opposite of distributing:

$$
2(x+7)=2 x+14=2(x+7)
$$

Instead of multiplying through es

We are \qquad

What does it mean for a number to be PRIME?

Give the prime factorization for:

Find the greatest common factor (GCF) of the terms

$$
\frac{4 x^{3} y^{4}, 8 x^{2} y^{3}, 12 x y_{j}^{2}}{4 x y^{2}}
$$

You Try
Find the greatest common factor (GCF) of the terms

$$
\begin{gathered}
3 x^{3} y^{5}, 9 x^{2} y^{3}, 12 x y^{4} \\
3 \times y^{3}
\end{gathered}
$$

Factor out the GCF

$$
\left(\begin{array}{l}
4 a^{2} b^{2}-10 a b^{3}+18 a^{3} b^{4} \\
2 a b^{2}\left(2 a-5 b+9 a^{2} b^{2}\right)
\end{array}\right.
$$

You Try
Factor out the GCF
$6 y^{3}-14 y^{2}+10 y$
$2 \underset{(G C F)}{2 y}\left(3 y^{2}-7 y+5\right)$

Factor out the GCF

$$
\begin{aligned}
& 4 x^{3}+6 x^{2}+2 x \\
& 2 x\left(2 x^{2}+3 x+1\right)
\end{aligned}
$$

You Try

Factor out the GCF

$$
\begin{array}{ll}
-5 y^{2}+10 y & 5 c^{5} d^{3}-10 c^{4} d^{2}-25 c^{3} d \\
5 y(-y+2) & 5 c^{3} d\left(c^{2} d^{2}-2 c d^{-5}\right)
\end{array}
$$

Factor out the Greatest Common Binomial Factor $(x-3)=z$

$$
4 x(x-3)+5(x-3)
$$

$4 x z+5 z$
$4(4-3)(4 x+5)$

You Try

Factor out the Greatest Common Binomial Factor

$$
\begin{aligned}
& \underline{4 a}(\underline{a-3})+\underline{3}(\underline{a-3}) \\
& (a-3)(4 a+3) \\
& G \subset F
\end{aligned}
$$

Sometimes every term does NOT have a common factor, but groups of terms do so we:

1- Split our expression into groups
2- Factor out the common factor from each group

Factor by grouping

$$
\rightarrow \frac{4(x-y)+a(\underline{x-y)}}{\frac{4 x-4 y}{}+\underline{a x-a y}} \underset{(x-y)(4+a)}{ }
$$

Factor by grouping

$$
\begin{aligned}
& \frac{6 x^{2}+9 x}{3 x(2 x+3)-5(2 x+3)}-\frac{10 x-15}{6 x+3)(3 x-5)} \\
& \frac{2 x}{2}+(2)
\end{aligned}
$$

You Try
Factor by grouping

$$
\frac{6 z^{2}+2 z+9 z+3}{2 z(3 z+1)+3(3 z+1)}
$$

Factor COMPLETELY by grouping
$6 x^{2}+8 x+18 x+24$

You Try
Factor by grouping

$$
\begin{aligned}
& \frac{2 x^{2}+2 x+x+1}{2 x(x+1)+1(x+1)} \\
& \frac{(x+1)(2 x+1)}{(x)}
\end{aligned}
$$

$$
\begin{gathered}
2 b^{2}+b+4 b+2 \\
b(2 b+1)+2(2 b+1) \\
(2 b+1)(b+2) \\
3 n^{2}-6 n-2 n+4 \\
-28 n+2(n-2) \\
(n-2)(3 n-2)
\end{gathered}
$$

