

using the distance formula, find c.

$$c^2 = (b\cos C - a)^2 + (b\sin C - 0)^2$$

Law of Cosines

#48

$$c^{2} = b^{2} + a^{2} - 2ab \cos C$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$

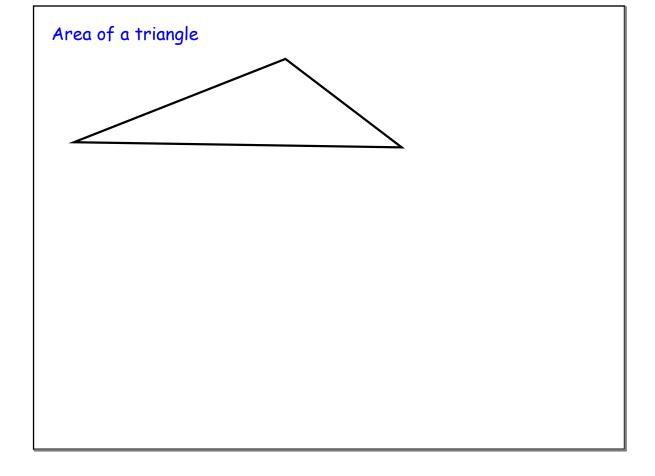
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

 $(side \ opp \ \measuredangle)^2 = (adj \ side)^2 + (adj \ side)^2 - 2(adj \ side)(adj \ side)\cos \measuredangle$

use w/ SSS or SAS or w/ SSA using quad formula

Solve the triangle: a = 11 b = 5 C = 20°

Solve the triangle:


$$a = 19$$

$$b = 24$$

$$c = 27$$

$$\angle = \cos^{-1} \left(\frac{opp^2 - adj^2 - adj^2}{-2(adj)(adj)} \right)$$

$$\angle = \cos^{-1} \left(\frac{adj^2 + adj^2 - opp^2}{2(adj)(adj)} \right)$$

Heron's Formula

For any triangle ABC with sides a, b, c the semiperemter is:

$$s = \frac{a+b+c}{2}$$

The area of that triangle can be found using heron's formula:

$$area: \sqrt{s(s-a)(s-b)(s-c)}$$

Find the area of the triangle with side lengths a = 13, b = 15, c = 18

Is it a triangle?	
a = 8.2, b = 12.5, c = 28	