
using the distance formula, find c .

$$
c^{2}=(b \cos C-a)^{2}+(b \sin C-0)^{2}
$$

> Law of Cosines $c^{2}=b^{2}+a^{2}-2 a b \cos C$ $b^{2}=a^{2}+c^{2}-2 a c \cos B$ $a^{2}=b^{2}+c^{2}-2 b c \cos A$
$(\text { side opp } \measuredangle)^{2}=(\text { adj side })^{2}+(\text { adj side })^{2}-2($ adj side $)($ adj side $) \cos \measuredangle$
use w/ SSS or SAS
or w/ SSA using quad formula

Solve the triangle: $a=11 \quad b=5 \quad C=20^{\circ}$

Solve the triangle:
$\mathrm{a}=19$
$\mathrm{b}=24$
$\mathrm{c}=27$

$$
\begin{aligned}
& \measuredangle=\cos ^{-1}\left(\frac{o p p^{2}-a d j^{2}-a d j^{2}}{-2(a d j)(a d j)}\right) \\
& \measuredangle=\cos ^{-1}\left(\frac{a d j^{2}+a d j^{2}-o p p^{2}}{2(a d j)(a d j)}\right)
\end{aligned}
$$

Area of a triangle

Heron's Formula

For any triangle $A B C$ with sides a, b, c the semiperemter is:

$$
s=\frac{a+b+c}{2}
$$

The area of that triangle can be found using heron's formula:

$$
\text { area }: \sqrt{s(s-a)(s-b)(s-c)}
$$

Find the area of the triangle with side lengths $a=13, b=15, c=18$

> Is it a triangle?
> $a=8.2, b=12.5, c=28$

