$\sin 2 x=2 \sin x \cos x$

$$
\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}
$$

$$
\begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { Power Reducing: } \\
& \cos ^{2} x=\frac{1+\cos 2 x}{2} \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
& \tan ^{2} x=\frac{1-\cos 2 x}{1+\cos 2 x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Half Angle } \\
& \begin{aligned}
\sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{2}} & \tan \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{1+\cos x}} \\
& =\frac{1-\cos x}{\sin x} \\
\cos \frac{x}{2}= \pm \sqrt{\frac{1+\cos x}{2}} & =\frac{\sin x}{1+\cos x}
\end{aligned}
\end{aligned}
$$

Use the half angle identities to find the exact value without a calculator
$\sin 15^{\circ}$

Prove: $(\sin x+\cos x)^{2}=1+\sin 2 x$
$\frac{2 \tan x}{1+\tan ^{2} x}=\sin 2 x$

Solve the equation:
$\sin 2 x+\cos x=0$

Use the power reducing formula to reduce:
$\cos ^{4} x$

Use the power reducing formula to reduce:

