5.3 Sum \& Difference Identities

$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$ $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$

February 06, 2012
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$ $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$

$$
\begin{aligned}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

Find the exact value of:

$$
\begin{aligned}
& \cos 105^{\circ}=\cos (45+60)=\cos 45 \cos 50-\sin 45 \sin 60 \\
& \frac{\sqrt{2}}{2} \cdot \frac{1}{2}-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4}=\frac{\sqrt{2}-\sqrt{6}}{4} \\
& \sin 15^{\circ}=\sin (45-30)=\sin ^{4} \cos 30 \cdot \cos 45 \sin 30 \\
& \tan \left(\frac{5 \pi}{12}\right)=\tan \left(\frac{\pi}{6}+\frac{\pi}{4}\right)=\frac{\tan \frac{\pi}{1}+\tan \frac{\pi}{4}}{1-\tan \frac{\pi}{4} \tan \frac{\pi}{4}} \\
& \frac{\pi}{6}=\frac{2 \pi}{12}=\frac{\frac{\sqrt{3}}{3}+\frac{3}{3}}{\frac{3}{3}-\frac{\sqrt{3}}{3}(1)}=\frac{\frac{\sqrt{3}+3}{3}}{\frac{3-\sqrt{3}}{4}}=\frac{3 \pi \sqrt{3}}{3} \cdot \frac{3}{3-\sqrt{3}}=\frac{3+\sqrt{3}(3+\sqrt{3})}{3-\sqrt{3}(3+\sqrt{3})} \\
& \frac{\pi}{3}=\frac{4 \pi}{12} \quad \frac{(3+\sqrt{3})^{2}}{9-3}=\frac{(3+\sqrt{3})^{2}}{6}
\end{aligned}
$$

Write as the sin, cos, or tan of an angle:
$\sin 50^{\circ} \cos 26^{\circ}-\cos 50^{\circ} \sin 26^{\circ}$

$$
\sin (50-26)=\sin 24^{\circ}
$$

$\cos 50^{\circ} \cos 26^{\circ}-\sin 50^{\circ} \sin 26^{\circ}$
$\cos (50+26)=\cos 76^{\circ}$
$\frac{\tan \frac{\pi}{3}-\tan \frac{\pi}{4}}{1+\tan \frac{\pi}{3} \tan \frac{\pi}{4}}$

$$
\tan \left(\frac{1 \pi}{13}-\frac{3 \pi}{12}\right)=\tan \frac{\pi}{12}
$$

Prove the identity:

$$
\begin{aligned}
& \cos \left(x-\frac{\pi}{2}\right)=\sin x \\
& =\cos x \cos \frac{\pi}{2}+\sin x \sin \frac{\pi}{2} \\
& =\cos x(0)+\sin x(1) \\
& =\sin x
\end{aligned}
$$

1- used Identity
2-Evaluate
3-simplify

If one of the angles in a sum or difference is a quadrantal angle (multiple of 90 or $\Pi / 2$) then the sum-difference identities yield single-termed expressions.

We call these reduction formulas

$\sin (x-y)+\sin (x+y)=2 \sin x \cos y$

$\sin x \cos y-\cos x \sin y+$
$\sin x \cos y+\cos x \sin y$

$$
=2 \sin x \cos y
$$

Use your knowledge of identities to describe the transformation of these graphs.

$$
\begin{aligned}
& \cos (x-3) \\
& \cos x \cos 3+\sin x \sin 3
\end{aligned}
$$

$$
\begin{gathered}
\cos (3-2 x) \\
\cos (-2 x+3) \\
\cos (-2(x-3 / 2)) \\
\frac{2 \pi}{2}=\pi
\end{gathered}
$$

Just like in 5.1 we can use identities to help us solve equations using trig

$$
\begin{gathered}
\cos 3 x \cos x=\sin 3 x \sin x \\
-\sin 3 x \sin x-\sin 3 x \sin x \\
\cos 3 x \cos x-\sin 3 x \sin x=0 \\
\cos (3 x+x)=0 \\
\cos (4 x)=0 \\
\frac{4 x}{4}=\frac{\pi}{2} \\
x=\frac{\pi}{8}
\end{gathered}
$$

$$
\begin{gathered}
\sin (3 x)=3 \cos ^{2} x \sin x-\sin ^{3} x \\
\sin (2 x+x)=\sin 2 x \cos x+\cos 2 x \sin x=\sin (x+x) \cos x \cos x+x \\
{\left[\sin x \cos x+\cos ^{2} s \sin x \cos x+\left[\cos x \cos ^{2} x-\sin x \sin x\right) \sin x\right.} \\
\sin x \cos ^{2} x+\cos ^{2} x \sin x+\cos ^{2} x \sin x-5 \sin ^{3} x \\
3 \cos ^{2} x \sin ^{2} x-\sin ^{3} x
\end{gathered}
$$

