$$
\begin{aligned}
& \text { 5.3 Sum \& Difference Identities } \\
& \begin{array}{l}
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{array}
\end{aligned}
$$

$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$ $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$

$$
\begin{aligned}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

Find the exact value of:
$\cos 105^{\circ}$
$\sin 15^{\circ}$
$\tan \left(\frac{5 \pi}{12}\right)$

> Write as the \sin , \cos, or tan of an angle:
> $\sin 50^{\circ} \cos 26^{\circ}-\cos 50^{\circ} \sin 26^{\circ}$
> $\cos 50^{\circ} \cos 26^{\circ}-\sin 50^{\circ} \sin 26^{\circ}$
> $\frac{\tan \frac{\pi}{3}-\tan \frac{\pi}{4}}{1+\tan \frac{\pi}{3} \tan \frac{\pi}{4}}$

Prove the identity:
$\cos \left(x-\frac{\pi}{2}\right)=\sin x$

If one of the angles in a sum or difference is a quadrantal angle (multiple of 90 or $\Pi / 2$) then the sum-difference identities yield single-termed expressions.

We call these reduction formulas
$\sin (x-y)+\sin (x+y)=2 \sin x \cos y$

Use your knowledge of identities to describe the transformation of these graphs.

$$
\cos (x-3) \quad \cos (3-2 x)
$$

Just like in 5.1 we can use identities to help us solve equations using trig
$\cos 3 x \cos x=\sin 3 x \sin x$

$\sin (3 x)=3 \cos ^{2} x \sin x-\sin ^{3} x$

