prove the algebraic identity by starting with the LHS expression and supplying a sequence of equivalent expressions that ends with the RHS expression

$$
\begin{aligned}
& \tan x+\cot x=\sec x \csc x \\
& \tan x+\cot x \frac{\sin }{\sin \sin x} x \\
&=\frac{\cos x}{\sin x} \frac{\cos x}{\sin x} \\
& \frac{\sin ^{2} x}{\sin x \cos x} x \\
&=\frac{\cos ^{2} x}{\sin x+\cos x} \\
&=\frac{1}{\sin x \cos x} \\
&=\frac{1}{\sin x \cos x}=\frac{1}{\sin x} \cdot \frac{1}{\cos x} \\
&=\operatorname{cscsec} x
\end{aligned}
$$

## General Strategies

$\pm$ Begin with the more complicated expression and work toward the less complicated expression
it If no other move suggests itself, convert the entire expression to one involving sines and cosines
it Combine fractions by combining them over a common denominator.

## Prove each identity:

$$
\begin{aligned}
& \frac{\sin ^{2} x+\cos ^{2} x}{\cos ^{2} x}=\left(\frac{1}{\cos x}\right)^{2} \\
& \frac{1}{\cos ^{2} x}=\left(\frac{1}{\cos x}\right)^{2} \\
&\left(\frac{1}{\cos x}\right)^{2}=\left(\frac{1}{\cos x}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1+\cot ^{2} x}{\csc ^{2} x} & =1 \\
\frac{\csc ^{2} x}{\csc ^{2} x} & =1 \\
1 & =1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sec x}{\cos x}-1=\frac{\sin ^{2} x}{\cos ^{2} x} \quad \frac{1}{\cos x} \cdot \frac{1}{\cos x} \\
& \frac{y / \cos x}{\cos x}-1=\tan ^{2} x \\
& \frac{1}{\cos ^{2} x}-1=\tan ^{2} x \\
& \sec ^{2} x-1=\tan ^{2} x \\
& \tan ^{2} x=\tan ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\cot ^{2} x}{1+\csc x}=(\cot x)(\sec x-\tan x) \\
& \frac{\csc ^{2} x-1}{1+\csc x}=\cot x \sec x-\tan x \cot x \\
& \frac{x^{2}-49}{1+\csc x} x-(x-7)(x+7) \\
& \csc (x-1)=\frac{1}{\sin x}-1 \\
& \csc (x-1)=\csc x-1
\end{aligned}
$$

