

What does the word identity mean to you?

Identity:

#45

equality that is true for all values of the domain for both expressions as long as they are both defined

$$\tan \theta \cdot \cos \theta = \sin \theta$$

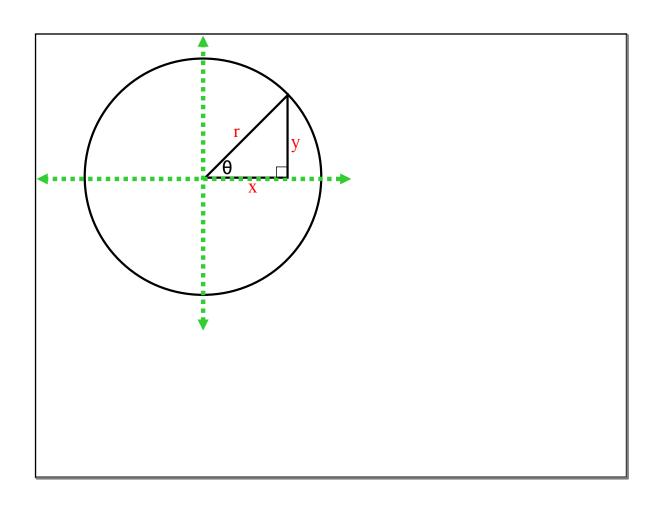
this is true for all θ , as long as $\sin\theta$, $\cos\theta$, and $\tan\theta$ are defined

Reciprocal & Quotient Relationships

$$\sin \theta = \frac{1}{\csc \theta} \qquad \qquad \csc \theta = \frac{1}{\sin \theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$


$$\cos\theta = \frac{1}{\sec\theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cos \theta = \frac{1}{\sec \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$

$$\tan \theta = \frac{1}{\cot \theta}$$
 $\cot \theta = \frac{1}{\tan \theta}$

$$\cot \theta = \frac{1}{\tan \theta}$$

Pythagorean Relationships

$$x^2 + y^2 = r^2$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin^2\theta = 1 - \cos^2\theta$$

$$\cos^2 \theta = 1 - \sin^2 \theta$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

Pythagorean Relationships

$$1 + \tan^2 \theta = \sec^2 \theta$$

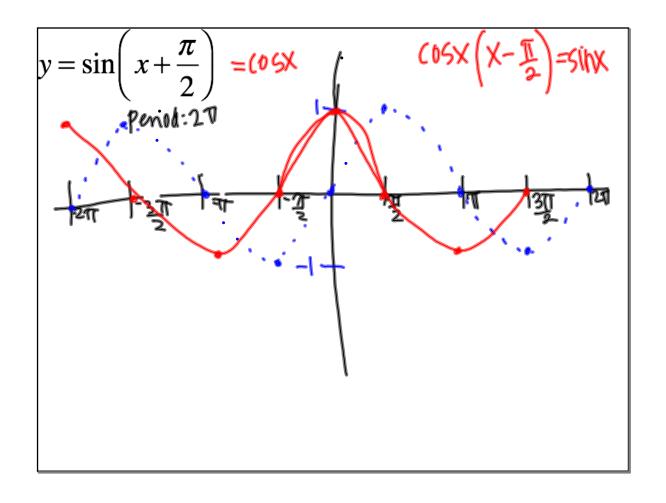
$$1 = \sec^2 \theta - \tan^2 \theta$$

$$\tan^2\theta = \sec^2\theta - 1$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$1 = \csc^2 \theta - \cot^2 \theta$$


$$\cot^2\theta = \csc^2\theta - 1$$

Pythagorean Relationships

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

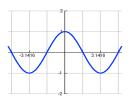
$$1 + \cot^2 \theta = \csc^2 \theta$$

Co-Function Identities

$$\sin(\frac{\pi}{2} - \theta) = \cos\theta$$

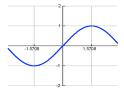
$$\sin(\frac{\pi}{2} - \theta) = \cos\theta$$
 $\cos(\frac{\pi}{2} - \theta) = \sin\theta$

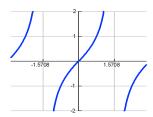
$$\tan(\frac{\pi}{2} - \theta) = \cot \theta$$
 $\cot(\frac{\pi}{2} - \theta) = \tan \theta$


$$\cot(\frac{\pi}{2} - \theta) = \tan\theta$$

$$\sec(\frac{\pi}{2} - \theta) = \csc\theta$$

$$\sec(\frac{\pi}{2} - \theta) = \csc\theta$$
 $\csc(\frac{\pi}{2} - \theta) = \sec\theta$


Odd/Even Identities


$$\cos(-x) = \cos x$$

$$\sec(-x) = \sec x$$

$$\sin(-x) = -\sin x$$

$$\csc(-x) = -\csc x$$

$$\tan(-x) = -\tan x$$

$$\cot(-x) = -\cot x$$

Simplify:

$$\sin x \csc(-x)$$

$$\cot x \tan x$$

Perfect Squares:

$$x^2 - 8x + 16$$

$$x^2 + 14x + 49$$

$$\sin^2 x - 10\sin x + 25$$

$$\cos^2 x + 16\cos x + 64$$

Difference of Squares:

$$x^2 - 16$$
 $x^2 - 49$

$$x^2 - 49$$

$$1 - x^2$$

$$1-\sin^2 x$$

$$\sin^2 x - \cos^2 x$$

Simplify:

$$\frac{1-\cos^2 x}{1+\cos x}$$

$$\frac{1}{1-\sin x} + \frac{1}{1+\sin x}$$

Solve the Equation for $[0, 2\pi]$	Solve the	Equation	for	[0, 2]	π)
------------------------------------	-----------	----------	-----	--------	---------

$$\tan x \sin^2 x = \tan x$$

How you write all solutions