

Pythagorean Theorem
In a right triangle where a and b are the legs and c is the hypotenuse,

Find the missing side in the right triangle using the pythagorean theorem:
ex.

$3^{2}+4^{2}=c^{2}$
$9+16=c^{2}$
$\sqrt{25}=\sqrt{c^{2}}$
$\mathrm{S}=\mathrm{c}$
ex.

$5^{2}+12^{2}=c^{2}$
$25+144=2^{2}$
$\sqrt{169}=1 c^{2}$
$13=c$

Find the missing side in the right triangle using the pythagorean theorem:
ex.

ex.

Find the missing side in the right triangle using the pythagorean theorem:
ex. $\quad 2 \sqrt{2} \cdot 2 \sqrt{2}=4 \sqrt{4}=4 \cdot 2=e \mathrm{ex}$.

$(2 \sqrt{2})^{2}+15^{2}=c^{2}$
$8+225=c^{2}$
$\sqrt{233} 3 \sqrt{c^{2}}$
$\sqrt{233}=c$

$b^{2}+b^{2}=12^{2}$
$36+b^{2}=144$

How to find trig in RIGHT triangles:

SOB CAM TA

$$
\begin{array}{ll}
\sin \theta=\frac{o p p}{h y p} & \frac{\csc \theta=\frac{h y p}{c o s e c a n t}}{o p p} \\
\cos \theta=\frac{a d j}{h y p} & \frac{\sec \theta=\frac{h y p}{\text { secant }}}{a d j} \\
\tan \theta=\frac{o p p}{a d j} & \frac{\cot \theta=\frac{a d j}{\operatorname{cotangent}} o p p}{}
\end{array}
$$

Find: $\sin \mathrm{A}=\frac{7}{25}$

$$
\cos A=\frac{24}{25}
$$

$\tan ^{-1} / A$
$\tan A)=\left(\frac{7}{24}\right)$
$A=\tan ^{-1}\left(\frac{7}{24}\right)$
$A=16.2^{\circ}$

Find:

$$
\tan A=\frac{7}{24}
$$

$\sin A=$	$\csc A=$
$\cos A=$	$\sec A=$
$\tan A=$	$\cot A=$

Find the other six trigonometric functions:

$\tan \theta=\frac{3}{4} \cot \theta=\frac{4}{3}$

$$
\begin{array}{ll}
\sin \theta= & \csc \theta= \\
\cos \theta= & \sec \theta= \\
\tan \theta= & \operatorname{cott} \theta=
\end{array}
$$

Find the other six trigonometric functions:
(hint: draw a triangle)
$\cos \theta=\frac{12}{13}$

