
> coterminal angles: angles in standard position with the same terminal ray example

Find a positive and negative angle that are coterminal with
-150°
$\frac{2 \pi}{3}$

Let $\boldsymbol{\theta}$ be the acute angle in stander position whose terminal side contains the point $(5,3)$. Find all the trigonometric functions.

Let $\boldsymbol{\theta}$ be the acute angle in stander position whose terminal side contains the point $(-5,3)$. Find all the trigonometric functions.

$$
\begin{aligned}
& \sin \theta=\frac{o p p}{h y p}=\frac{y}{r} \\
& \cos \theta=\frac{a d j}{h y p}=\frac{x}{r} \\
& \tan \theta=\frac{o p p}{a d j}=\frac{y}{x} \\
& \sec \theta=\frac{h y p}{a d j}=\frac{r}{x} \csc \theta=\frac{h y p}{o p p}=\frac{r}{y} \cot \theta=\frac{a d j}{o p p}=\frac{x}{y}
\end{aligned}
$$

Give the sign without using a calculator
$\left(\frac{\pi}{2}, \pi\right) \quad \sin \theta \cos \theta \tan \theta$
$\tan 192^{\circ}$

Choose a point on the terminal side of $\theta=\frac{2 \pi}{3}$
$(-1,1)$
$(-1, \sqrt{3})$
$(-\sqrt{3}, 1)$

Special Triangles

Find the following without a calculator:

$\sin \left(-210^{\circ}\right)$

 $\tan \left(\frac{5 \pi}{3}\right)$$$
\sec \left(\frac{-3 \pi}{4}\right)
$$

quadrantal angles: angles with the terminal ray on one of the axes

Find $\cos \theta$ and $\tan \theta$ by using the given information to construct a reference triangle $\sin \theta=\frac{3}{7} \tan \theta<0 \quad \sec \theta=3 \quad \sin \theta>0$

