

$$
\begin{aligned}
& \sin \theta=\frac{o p p}{h y p}=\frac{y}{r} \\
& \cos \theta=\frac{a d j}{h y p}=\frac{x}{r} \\
& \tan \theta=\frac{o p p}{a d j}=\frac{y}{x} \\
& \sec \theta=\frac{h y p}{a d j}=\frac{r}{x} \csc \theta=\frac{h y p}{o p p}=\frac{r}{y} \cot \theta=\frac{a d j}{o p p}=\frac{x}{y}
\end{aligned}
$$

Find all six trig ratios for the given triangle:

$$
\begin{array}{ll}
\sin \theta=4 / 7 & \csc \theta=17 / 8 \\
\cos \theta=\frac{15}{17} & \sec \theta=\frac{17}{15} \\
\tan \theta=\frac{8}{15} & \cot \theta=15 / 8
\end{array}
$$

$$
\begin{aligned}
& 5^{2}+10^{2}=c^{2} \\
& 125=c^{2} \\
& c=\sqrt{125}=5 \sqrt{5} \\
& 525
\end{aligned}
$$

Find all six trig ratios for the given triangle:

$$
\begin{aligned}
& \sin \theta=\frac{5}{5 \sqrt{5}}=\frac{1}{\sqrt{5}} \\
& \cos \theta=\frac{10}{5 \sqrt{5}}=\frac{2}{\sqrt{5}} \\
& \tan \theta=\frac{5}{10}=\frac{1}{2}
\end{aligned}
$$

$$
\csc \theta=\frac{5 \sqrt{5}}{5}=\sqrt{5}
$$

$$
\sec \theta=\frac{5 \sqrt{5}}{10}=\frac{\sqrt{5}}{2}
$$

$$
\cot \theta=\frac{2}{1}=2
$$

Given the following trig function, find the remaining 5 functions:
$\csc \theta=\frac{13}{5}$

Work on 3-18 (remember every third)

Using your calculator, find:
$\tan 8^{\circ}=.1405$ $\cot \frac{\pi}{12}=\frac{1}{\tan \frac{\pi}{2}} \approx 3.7$
$\cos 18.15^{\circ}=.9502$
$\tan 5.25=$
$\sec \frac{\pi}{6}=1.155$

A bird sitting on a 33' tower looks at a boat from an angle of depression of 50.5°. How far is the boat from the tower?
$\operatorname{tan50.5}=\frac{x}{33}$ $33 \tan 50.5^{\circ}=x$

Special Triangles $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$

$30^{\circ} 45^{\circ} 60^{\circ} 10^{\circ}$

Find the angle or value without a calculator:

$$
\cot \frac{\pi}{3}=\frac{1}{\sqrt{3}}
$$

$$
\sin \theta=\frac{\sqrt{3}}{2} \quad \theta=60^{\circ}, \frac{\pi}{3}
$$

$$
\cos \theta=\frac{1}{2} \quad \theta=60^{\circ}, \frac{\pi}{3}
$$

$$
\sec \theta=2=\theta-60^{\circ}
$$

