4.1 Angles

alpha
 Radians vs. Degrees
 angles are usually named with Greek letters $\begin{aligned} & \text { 日, }\end{aligned}$

α, β for example
there are 2 units used to measure angles:
degrees: 360° in a circle
radians:2 2π

4.1 Angles
 \#40
 Radians vs. Degrees

angles are usually named with Greek letters θ, α, β for example there are 2 units used to measure angles:
degrees: 360° in a circle
radians:

What is a radian?
A central angle of a circle has a measure of 1 RADIAN if it intercepts an arc with the same length as the radius

How many degrees are in half a circle? How many degrees are in π ?

$$
180^{\circ} \cong \pi
$$

What ratio do I use to convert between degree and radian angle measures?

$$
\frac{180^{\circ}}{\pi} \frac{\pi}{180^{\circ}} \frac{360^{\circ}}{2 \pi} \frac{2 \pi}{360^{\circ}}
$$

Examples:

$$
(r a d) \frac{0}{r_{a d}} \frac{r a d}{0}
$$

Convert to degrees:
(27/3) $\frac{2 \pi}{3} \cdot \frac{180^{\circ}}{\not 7}=\frac{360^{\circ}}{3}=120^{\circ}$

$$
5 \pi / 4 \quad \frac{5 \pi}{4} \cdot \frac{180^{\circ}}{\pi}=\frac{900^{\circ}}{4}=225^{\circ}
$$

$$
\begin{aligned}
& (3 \mathrm{rad}) \frac{180^{\circ}}{\pi}=\frac{3.180^{\circ}}{\pi} \\
& \frac{540^{\circ}}{\pi} \approx 171.8^{\circ}
\end{aligned}
$$

Convert to radians:

$$
\begin{aligned}
& 1586 \frac{\pi}{180^{\circ}}=\frac{15 \pi}{18}=\frac{5 \pi}{6} \\
& 315^{\circ}=\frac{\pi}{180}=\frac{315 \pi}{18}=\frac{7 \pi}{4} \\
& \text { venice } 22000180
\end{aligned}
$$

Since radians are related to arc length we can use the circumference formula to help us find arc length

$s=r \theta$
when s is the arc length and θ is the angle measured in radians

Arc Length (back)

Arc length formula using degrees

$$
s=r \theta
$$

θ is supposed to be in radians, if θ is degrees how do you convert from degrees to radians?

Examples:

$$
S=r \theta
$$

use the appropriate arc length formula to find the missing information

$$
\begin{aligned}
& \text { s r } \theta \\
& \text { ? } \\
& 2 \text { in } \\
& 25 \text { rad. } \\
& S=2(25)=50 \\
& 40 \mathrm{~cm} \\
& \text { ? } \\
& \left(\frac{9}{\pi}\right) 40=r\left(\frac{\pi}{9}\right)\left(\frac{9}{\pi}\right) \\
& \frac{360}{\pi}=r \\
& \theta \\
& 20^{\circ} \frac{\pi}{180}=\frac{20 \pi}{180}=\frac{\pi}{9}
\end{aligned}
$$

DMS Degrees, Minutes and Seconds
A degree is a unit of angular measure equal to $1 / 180$ th of a straight angle. In DMS each degree is subdivided into 60 minutes (') and each minute is subdivided into 60 seconds (").
a) convert 37.425° degrees to DMS

$$
\begin{gathered}
37^{\circ} \cdot 425\left(60^{\prime}-255^{\prime} \quad .5(60)=30^{\prime \prime}\right. \\
37^{\circ} 25^{\prime} 30^{\prime \prime}
\end{gathered}
$$

b) convert $42^{\circ} 24^{\prime} 36^{\prime \prime}$ to degrees

$$
42^{\circ}+\frac{24^{\circ}}{60}+\frac{36^{\circ}}{3600}=42.41^{\circ}
$$

