
2. Dilation:

- a transformation that enlarges or reduces a pre-image to create a similar image

A dilation requires a center point and a scale factor. The letter@usually represents the scale factor.

In the above figure - Triangle $A^{\prime} B^{\prime} C^{\prime}$ is a dilation of triangle ABC

3.Scale Factor:

- Is the ratio:

- the distance from the center of dilation to a point on the image: to the distance from the center of dilation to the corresponding point on the pre-image.
- When $|r|$ is greater than 1, the dilation is an enlargement.
- When $|r|$ is between 0 and 1 , the dilation is a reduction.
- I $r>0$. P^{\prime} lies on $C P$, and $C P^{\prime}=r(C P)$
- If $r<0, P^{\prime}$ lies on $C P^{\prime}$ (the ray opposite $C P$) and $|r|(C P)$

4. Dilation preserve angle measure, betweenness of points, and linearity, but do NOT preserve distance. Therefore, a dilation is a similarity transformation.

Vocabulary

Image: The Dialation
Preimage: Befor Th Dialation
Dilation: to get bigger/smaller
Center of Dilation: A point pilate from. scale Factor: How MUCh you dialate Similar: Close but not the same
ex) Find the measure of the dilation image $A^{\prime} B^{\prime}$ or the preimage $\overline{A B}$ using the given scale factor.

$$
\begin{aligned}
& \text { a) } A B=12, r=2 \\
& A^{\prime} B^{\prime}=24
\end{aligned}
$$

5. Constructing dilations.

ex) Draw the dilation image of triangle JKL with center C and $r=$ $-1 / 2$

${ }^{*} \mathrm{C}$

Steps:

1) Draw CJ, CK, and CL. Since r is negative, J^{\prime}, K^{\prime}, and L^{\prime} will lie on $C J^{\prime}, \mathrm{CK}^{\prime}$ and CL' respectively.
2) Locate J^{\prime}, K^{\prime}, and L^{\prime} so that $C J '=(1 / 2)(C)$ CK, $=(1 / 2)(C K)$, and $C L^{\prime}=(1 / 2)(C L)$.
3) Draw triangle J'K'L'

