\$\$ 3.6 The Mathematics of Finance \$\$ Time $=$ Money

When you borrow money you must pay interest.
When you put money into a savings account or loan money you can earn interest.

Interest is calculated using Exponential Functions!

Interest prinuiple : :nitialamount

Compounded Annually: $A=P(1+r)^{n}$ (time years) Amonit
Ater itred

Suppose Blake invests $\$ 500$ at 7% interest compounded annually. Find the value of his investment 10 years later.

$$
\begin{aligned}
& A=50(1+0,)^{10} \\
& A \text { 年 } 985^{A=500(1.7)} \\
& 983.5
\end{aligned}
$$

Interest \dagger

Compounded Annually: $A=P(1+r)^{n}$

Compounded k Times per year: $A=P\left(1+\frac{r}{k}\right)^{k t}$

Suppose Roberto invests \$500 at 9\% annual interest compounded monthly. Find the value of his investment 5 years later.
$A=500\left(1+\frac{.09}{12}\right)^{12 \cdot 6}$
$A=500(1.0075)^{60}$
$222840 \$ 782.84$

Judy has \$500 to invest at 9\% annual interest compounded monthly. How long will it take her investment to grow to $\$ 3000$?

$$
\begin{aligned}
& \frac{3000}{500}=\frac{500\left(1+\frac{.09}{12}\right)^{12 t}}{940} \\
& 6=\left(1+\frac{.09}{12}\right)^{12 t} \\
& 6=(1.0075)^{12 t} \quad \begin{array}{c}
6.372 \\
6 \text { years } 5 \text { mont } \\
\text { 302 }
\end{array} \\
& \log _{1.0075} 6=12 t \quad \frac{.32(12) 4.46}{}
\end{aligned}
$$

Stephen has \$500 to invest. What annual interest rate compounded quarterly is required to double his money in 10 years?

$$
\begin{aligned}
& \frac{1000}{500}=\frac{500\left(1+\frac{r}{4}\right)^{4(10)}}{500} \\
& \sqrt[40]{2}=\left(1+\frac{r}{4}\right)^{40} \\
& \sqrt[40]{2}=1+\frac{r}{4}
\end{aligned} \quad \begin{aligned}
& 4(\sqrt[40]{2}-1)=r \\
& r=0619 \\
& r=6.99^{0} \%
\end{aligned}
$$

Interes \dagger

Compounded Annually: $A=P(1+r)^{n}$

Compounded k Times per year: $A=P\left(1+\frac{r}{k}\right)^{k t}$
compounded Continuously: $A=P e^{r t}$

Suppose LaTasha has \$100 to invest at 8\% annual interest compounded continuously. Find the value of her investment after $1,5, \& 10 \mathrm{yrs}$.

$$
\begin{array}{lr}
A=100 e^{.08 \times 1} & A=100 e^{.08 \times 5} \\
\$ 108.33 & \text { } 1 / 149.18 \\
A=100 p^{.08 \cdot 10} & \\
A=222.55 &
\end{array}
$$

Miss Mendel's saving account has a 0,05\% annual interest rate compounded continuously. If she has $\$ 2000$ in her savings account now how long will it take her to make $\$ 500$ in interest? $\quad A=P e^{\text {rt }}$

$$
\begin{aligned}
& \frac{2500}{}=\frac{2000 e^{.6005 t}}{2000} \\
& \ln 1.25=120005 t \\
& \frac{\ln 1.25}{.0005}=\frac{0005 t}{50055}
\end{aligned}
$$

