Write the following logs in exponential form:

$$
y=\log _{8} 25 \quad 30=\log _{3} x
$$

Write the following exponential equations in \log form:

$$
12=5^{x}
$$

$$
y=2^{-3 x}
$$

Properties of Logs

for all positive \#'s M, N, b, and x:
Product Rule

$$
\log _{b} M \cdot N=\log _{b} M+\log _{b} N
$$

Quotient Rule

$$
\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N
$$

Power Rule

$$
\log _{b} M^{x}=x \log _{b} M
$$

Product Rule Quotient Rule Power Rule

Write the following logs in expanded form:
$\log _{4} 5 x$
$\log _{4} \frac{x^{2}}{y^{3}}$
$\log _{4} 12$
$\log _{4} \frac{x}{6}$
$\log 3 x^{2}$
$\ln x^{5}$
$\ln \frac{3 x^{2}}{5 y^{3}}$

Write the following expression as a single log:
$\log _{4} 7+\log _{4} 5$
$\ln x-\ln y$
$2 \log _{4} 3-\log _{4} 5$
$4 \ln x+2 \ln y$
$\frac{1}{3} \ln x y-\frac{2}{3} \ln x y$

$$
\begin{gathered}
\text { Change of Base } \\
\log _{b} a=\frac{\log _{x} a}{\log _{x} b} \text { or } \frac{\ln a}{\ln b}
\end{gathered}
$$

Write the log using only common logs:	
$\log _{2} x$	$\ln 4 x$
$\log _{\frac{1}{2}} x$	
Write the log using only natural logs:	$\log _{2} 16$
$\log _{3} m$	
$\log _{2}(a+b)$	

Describe how to transform the graph of $y=\ln x$ into the given function:

$$
f(x)=\log _{3} x
$$

$$
f(x)=\log _{\frac{1}{4}} x
$$

