

Basic Properties of Logarithms For $0 \le \ne 1, x \ge 0$, and any real number y, $log_b 1 = 0$ because $log_b b = 1$ because $log_b b^y = y$ because $b^{log_b x} = x$ because Evaluate:

1. $\log_5 5^3$

2. $6^{\log_6(2x+5)}$

Write the following exponential functions as logs: $x = 6^2$ $y = 4^{\frac{3}{2}}$

 $16 = 4^{y}$

Write the following logs as exponential functions: $\log_8 x = 2$ $\log_2 8 = y$

$$\log_2 x = 3$$
$$\log_3 \frac{1}{9} = y$$

What does it mean if there is no base written on the log?

$$\log 100 = y$$

common log

When the base is e - what do we do? $16 = e^{y}$

Describe the transformations on each graph:

$$f(x) = \log(x+2)$$

$$f(x) = 3\log(-x) - 4$$

$$f(x) = -2\ln(2x) + 5$$