3.3 Log Functions and their Graphs \#35

Logarithms

Def of Logarithm: if $b>0, b \neq 0, n>0$, there is a number p such that $\log _{b} n=p$ iff $b^{p}=n$

a number or variable

$$
y=2^{x} \quad x=\log _{2} y
$$

$$
\begin{array}{lcc}
\mathrm{p} \text { is the only value that can be negative } & 2^{-3}=\frac{1}{8} \\
\begin{array}{ccc}
3^{2}=9 & 16^{\frac{1}{2}}=4 & -3=\log _{2} \frac{1}{8} \\
2=\log _{3} 9 & \log _{16} 4=\frac{1}{2} &
\end{array}
\end{array}
$$

Solve:

1. $\log _{6} x=2$
2. $\log _{4} 16=y$
3. $\log _{4} x=\frac{3}{2}$
4. $\log _{\frac{1}{3}} 27=y$

Logs \& Exponentials

$f(x)=2^{x} \quad \& \quad f(x)=\log _{2} x$ are inverses

$$
\begin{array}{cl}
x=2^{y} & \text { to find inverse: } \\
y=\log _{2} x & \text { 1. switch } \mathrm{x} \& \mathrm{y} \\
\text { 2. solve for } \mathrm{y}
\end{array}
$$

Basic Properties of Logarithms

For $0<b \neq 1, x>0$, and any real number y,
$\log _{b} 1=0$ because
$\log _{b} b=1$ because
$\log _{b} b^{y}=y$ because
$b^{\log _{b} x}=x \quad$ because

Evaluate:

1. $\log _{5} 5^{3}$
2. $6^{\log _{6}(2 x+5)}$

Write the following exponential functions as logs:

$$
\begin{aligned}
& x=6^{2} \\
& y=4^{\frac{3}{2}}
\end{aligned}
$$

$$
16=4^{y}
$$

Write the following logs as exponential functions:
$\log _{8} x=2$
$\log _{2} 8=y$
$\log _{\frac{2}{3}} x=3$
$\log _{3} \frac{1}{9}=y$

natural log

$$
f(x)=\ln x
$$

$$
f(x)=e^{x}
$$

Essentially In has a base of e

$$
y=\ln x \quad \text { iff } \quad e^{y}=x
$$

Evaluate without a calculator:
$\ln \sqrt{e}$
$\ln e^{5}$
$e^{\ln 4}$

Evaluating In and e on a calculator

Use a calculator to evaluate the logarithmic expressions, if it is defined, and check your result by evaluating the corresponding exponential equation.
$\ln 23.5$
$\ln 0.48$
$\ln -5$

What does it mean if there is no base written on the log?

$$
\log 100=y
$$

common log

When the base is $\mathrm{e}-$ what do we do?
$16=e^{y}$

Describe the transformations on each graph:

$$
f(x)=\log (x+2)
$$

$$
f(x)=3 \log (-x)-4
$$

$$
f(x)=-2 \ln (2 x)+5
$$

