2.8 Solving Inequalities in One Variable

when solving an inequality - your answer is the x values for where the function (y values) meets the given conditions

$$
f(x)>0
$$

report the x values for where the y's are greater than zero

$$
(-\infty,-1.5) \cup(1, \infty)
$$

A full graph is not needed to do this so we use a sign chart.
(A sign chart shows only the items related to the signs of the function.)

What are the important items in a graph?

$$
\begin{aligned}
& x \text {-intercepts } \\
& \underset{-3}{(x+3)(x-2)(x+2)^{2}} \geq 0 \\
& (-\infty,-3] \cup[2, \\
& \text { ©) } \\
& \frac{(-)(-)(t),(t)(-)(t))_{g}(t)(-)(t),(t)(t)(t)}{(t)-3(-)-2(-) 2(t)} \\
& \checkmark-3: M=1 \text { straight crosses: signonanges }
\end{aligned}
$$

Polynomial Inequalities

goal: solving where the polynomial is (+) or (-)

Everything on 1 side and factored
Find all x-intercepts
Plot using open \& closed holes according to the inequality sign

Find the signs of the graph in the intervals b/w the intercepts (use a value in the interval)

Answer: the intervals according to the inequality signs (use the union symbol if more than 1 interval)

Solve the polynomial inequality graphically.

$$
2 x^{3}-3 x^{2}-5 x+5<0
$$

When asked to solve graphically - use your calculator to find the x-intercepts - then give the appropriate intervals based on the question

Making Sign Chart for a Rational Function

$$
\begin{aligned}
&((2 x+1) \rightarrow x \text {-int. } \\
&(x+3)(x-1)) \rightarrow \text { VA } \\
& \text { Include } x \text {-int } \text { 方 V.A. }
\end{aligned}
$$

Rational Inequalities \#33

goal: to find where the graph is (+) or (-) depending on the inequality sign (remember to flip sign if multiply or divide by (-)

1. Get everything on one side and zero on the other
2. find LCD
3. Simplify the "everything" side into 1 fraction (not clearing fractions)
4. find x-intercepts - plot with open or closed holes depending on inequality signs
5. find restrictions (VA) - plot with open holes on line or if cross off undefined interval
6. use test point in intervals to find signs
7. Write answer in interval notation

$$
\begin{gathered}
\begin{array}{c}
\frac{x-2}{x}<\frac{x-4}{x-6} \\
\frac{-x-4}{x-6}-\frac{x-4}{x-6}
\end{array} \quad L C D: x(x-6) \\
\frac{(x-6)}{(x-6)} \frac{x-2}{x}-\frac{x-4(x)}{x-6(x)} \\
\frac{(x-6)(x-2)}{x(x-6)}-\frac{x(x-4)}{x(x-6)}<0 \\
\frac{x-8 x+12-x^{2}+4 x}{x(x-6)}<0 \\
\frac{-4 x+12}{x(x-6)}<0
\end{gathered}
$$

$$
\begin{gathered}
\frac{x-5 \Rightarrow 5}{(2 x-3)(x+2)} \geq 0 \\
\frac{(-)}{(-)(-)} \frac{(-)}{(-)(t)} \frac{(-)}{(t)(t)} \frac{(t)}{(t)(t)}-2(t) 3 / 2(-) 5(t) \\
{[-2,3 / 2] \cup[5, \infty)}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\sqrt{x-3} 3}{\substack{(2 x+1)(x-4) \\
-1 / 2}} \begin{array}{l}
(3,4) \\
10 \\
-1 / 2
\end{array}\left(\begin{array}{cc}
\frac{(+)}{(t)(-)} 0 & \frac{(-1)}{(t)(t)} \\
3(-) 4 & (t)
\end{array}\right.
\end{aligned}
$$

