2.8 Solving Inequalities in One Variable

when solving an inequality - your answer is the x values for where the function (y values) meets the given conditions

$$
f(x)>0
$$

report the x values for where the y's are greater than zero

$$
(-\infty,-1.5) \cup(1, \infty)
$$

A full graph is not needed to do this so we use a sign chart.
(A sign chart shows only the items related to the signs of the function.)

What are the important items in a graph?

$$
(x+3)(x-2)(x+2)^{2} \geq 0
$$

Polynomial Inequalities

goal: solving where the polynomial is (+) or (-)

Everything on 1 side and factored
Find all x-intercepts
Plot using open \& closed holes according to the inequality sign

Find the signs of the graph in the intervals b / w the intercepts (use a value in the interval)
Answer: the intervals according to the inequality signs (use the union symbol if more than 1 interval)

Solve the polynomial inequality graphically.

$$
2 x^{3}-3 x^{2}-5 x+5<0
$$

When asked to solve graphically - use your calculator to find the x-intercepts - then give the appropriate intervals based on the question.

Making Sign Chart for a Rational Function

$$
\frac{(2 x+1)}{(x+3)(x-1)}
$$

Rational Inequalities

goal: to find where the graph is (+) or (-) depending on the inequality sign (remember to flip sign if multiply or divide by (-)

1. Get everything on one side and zero on the other
2. find LCD
3. Simplify the "everything" side into 1 fraction (not clearing fractions)
4. find x-intercepts - plot with open or closed holes depending on inequality signs
5. find restrictions (VA) - plot with open holes on line or if cross off undefined interval
6. use test point in intervals to find signs
7. Write answer in interval notation

$$
\frac{x-2}{x}<\frac{x-4}{x-6}
$$

$$
\frac{x-5}{(2 x-3)(x+2)} \geq 0
$$

$\frac{\sqrt{x-3}}{(2 x+1)(x-4)}<0$

