2.7 Solving Rational Equations

Rational Equation: an eq. (has an =) made up of 1 or more rational expressions

steps -

- find restrictions (why do I have restrictions?)
- Find the LCD
- Multiply each term in eq. by LCD to clear fractions
- solve the equation
- check for extraneous solutions

$$
\begin{aligned}
& \frac{x+1}{3 x-6}=\frac{5 x}{6}+\frac{1}{x-2} \\
& \text { Restrictans: } x \neq 2 \\
& \text { LCD: } 6(x-2) \\
& 3(x-2) \\
& -2)\left(\frac{x+1}{3(x-2)}\right)=6(x-2)\left(\frac{5 x}{6}\right)+6(x-2)\left(\frac{1}{x-2}\right) \\
& 2(x+1)=5 x(x-2)+6 \\
& 2 x+2=5 x^{2}-10 x+6 \\
& 0=5 x^{2}-10 x-2 x+4 \\
& u=5 x(x-2)-2(x-2) \\
& 0=(x-2)(5 x-2) \quad x=2 x^{2} / 5 \\
& 2 \text { 2/5 } x=2 / 5
\end{aligned}
$$

$$
\begin{array}{cc}
\frac{x}{1}-\frac{3 x}{x+2}=\frac{6}{x+2} & \begin{array}{l}
R: x \neq-2 \\
L C D: x+2
\end{array} \\
(x+2) x-(x+2)\left(\frac{3 x}{x+2}\right)=(x+2)\left(\frac{6}{x+2}\right) \\
x(x+2)-3 x=6 \\
x^{2}+2 x-3 x-6=0 \\
x(x+2)-3(x+2)=0 \\
(x+2)(x-3)=0 \\
-x-3 \quad x=3
\end{array}
$$

$$
\begin{aligned}
& (x-2 x-3)(x-1)(x-3) \quad 2^{(x-1)(x-2)} \\
& \frac{2 x}{x-1}+\frac{1}{x-3}=\frac{2}{x^{2}-4 x+3}(x+1)(x-3) \\
& 2 x(x-3)+(x-1)=2 \quad \text { R: } 1,3 \\
& 2 x^{2}-6 x+(x-1)=2 \\
& L(D:(x-1)(x-3) \\
& 2 x^{2}-5 x-1=2 \\
& 2 x^{2}-5 x-3 \\
& 2 x^{2}-6 x+x-3 \\
& 2 x(x-3)+f(x-3)=0 \\
& (2 x+1)(x-3)=0 \\
& \begin{array}{ccc}
\downarrow & \downarrow \\
-1 / 2 & \ll & x=-1 / 2
\end{array}
\end{aligned}
$$

Mixture Problems

$$
\%=\frac{\text { part }}{\text { whole }}
$$

$$
\text { concentration }=\frac{\text { acid }}{\text { total liquid }}
$$

How much pure acid must be added to 70 mL of a 30% acid solution to reach mixture of 45\% acid?

$$
\begin{gathered}
(x+70) .45=\frac{x+21}{x+70}(x+70)^{30 \times 70} \\
.45 x+31.5=x+21 \\
-21 \\
.45 x+10.5=x \\
-.45 x=-.45 x \\
\frac{10.5}{.55}=\frac{.55 x}{.55} \\
19.09 \mathrm{ml}=x
\end{gathered}
$$

How much pure juice must be added to 100 mL of a 75% juice drink to reach a drink of 95% juice?

You want to put a rectangular pool in your backyard, you have an area of 200 square meters. To decrease costs, find the least perimeter of a rectangle with this area and the dimensions of the pool.

$$
\begin{aligned}
& P=2 l+2 \omega \quad \frac{200 m^{2}}{x}=\frac{x l}{x} \\
& P(x)=2 x+2\left(\frac{200}{x}\right) \\
& 2 x+\frac{200}{x}=l \\
& 200 m^{2} \\
& P: 56.56 \\
& l: 14.14 \\
& l: 14.14
\end{aligned}
$$

